XML-RPC for PHP

version 3.1.0

Edd Dumbill
Gaetano Giunta
Miles Lott
Justin R. Miller
Andres Salomon

XML-RPC for PHP: version 3.1.0

by Edd Dumbill, Gaetano Giunta, Miles Lott, Justin R. Miller, and Andres Salomon
Copyright © 1999,2000,2001 Edd Dumbill, Useful Information Company

All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
« Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

« Neither the name of the "XML-RPC for PHP" nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLEFORANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

IO | oo [0 (o o I ORI 1
ACKNOWIEAGEMENTSeiiei e e e e e e e et e e e e e eanns 1

2. WNEE'S MW .ottt 3
1 35 0O PP 3

130 PP 3

1 30 0 PP 3

30,0 DA et 3

2.2 et 4

22 PP 4

22 SOOI 5

220 SRR 5

2.0 FIN@ L 6

2.0 RelEase Candidate 3ooeeiiiiiieiii e 6

20 ReEl@ase CaNAITALe 2oiieiiie e 6

2.0 RelEase CaNdITAte 1veeiiiiieeiiii e aaaa 7

3. SYStEM REQUITEIMENTSiiiieii e e e e e e e e e e e e et e e et e e et e e eanaeeees 9
4. Filesin the distriDULIONooooiiiii e 10
5. Known bugs and lIMItationscoeuuioiiiiii e e e e e e e e e 12
Lo o 13
L@ 0 T TS o] o A 13

BTN = 1Y = o 13

7. Class AOCUMENTALIONuiiiiii et e e et e e et s e e aa e e e eeenns 14
XIMITPOVAL oo e aaae 14
NOLES ON LY DS it ana 14

L@ 1= [o PP 14

= {0 o L PP 15

D107 1.1 17

L@ 1= [o PP 17

= {0 o L PP 18

D81 0w o 1= | S Y 19

L@ 1= [o PP 19

= 10T o L P 19

VaHBDIES ..o 23

D107 === o 24

L@ 1= [o PP 24

= 10T o L P 24

D L1 0o =Y/ S 25
Method handler FUNCLIONSiiiiiiiiei e 25

The diSPatch MaPouii e 26

YV E= daToTo ST g U] = 26

Delaying the SErVEr FESPONSEcveeeii i eeee e e e e e e e e e e e e aneeeen 27

Modifying the server behaviourccooivii i 28

L1 =00] o 29

NEW SYIE SEIVEIS ovuiiiii i e e e e e e e e et e e e eaneees 29

8. GIObEl VATADIES ... 31
"CONSIANE" VAITADIES ... i 31
BXIMITPCEITUSEY .ttt e e ettt 31

$xmirpcl4, $xmirpcint, $xmlrpcBoolean, $xmirpcDouble, $xmlrpcString,
$xmirpcDateTime, $xmirpcBase64, $xmirpcArray, $xmirpcStruct, $xmirpcValue,
BXMIFPCNUIL <. 31
$xmlrpcTypes, $xmirpc_valid_parents, $xmlrpcerr, $xmirpcstr, $xmlrpcerrxml,
$xmirpc_backslash, $_xh, $xml_iso88591_Entities, $xmlEntities,

BXMITPCS_CAPANIIITIES ..vvvvvvveiiiiiiieiiiiie ettt 31
Variables whose value can be modifiedcooviiiiiiii 31
b8 [0 Tw o L= 1= 1o oo 1 oo MU 31

XML-RPC for PHP

XMIrPC_iNterNalENCOOINGccevuneeiiii e 32
XIMITPCNBITIE ..ttt et e e e e e e 32
D11 LoV = = To o U PP SUPPTT R SPPPTT 32
XMIFPC_NUIT_EXEENSION ..ot 32
xmlrpc_null_apache encodingvviiiiiiiiiii e 32
9. HEIPEr TUNCLIONS ...ttt ettt e e 33
DAL TUNCIIONS ... eeiti ettt ettt et e et e ab e e e s 33
ISOBB0L_ENCOME ...ttt ettt 33
ISOBB0L_AECOUE ... ettt 33
Easy use with nested PHP VAIUEScoooviiiiiiii e 33
PP _XMITPC_AECOTE ...t 33
PP _XMITPC_ENCOTE ...t 34
PhP_XMIFPC_decode XMLuiiiiiie e 35
Automatic conversion of php functions into xmlrpc methods (and vice versa) 35
WIap_ XMIFPC_MENOO ... 35
WIap_PhP FUNCHION ... 36
Functions removed from the [IBrary ... e 38
XIMITPC_ECOMR ... e e e 38
XIMIFPC_BNCOMR ...ttt e e e e eees 38
DEDUGGING @IUS ...ttt et 38
XMIFPC_dEDUGIMST ... 38
10. RESEIVEA MELNOOSceeteeeeiii ettt e e e e e eenes 39
SyStemM.getCapalilitiESoeeeie e 39
SYSIEMLIISIMEINOUS ... 39
SYStEM.MELNOASIGNEAIUNE ...t 39
SYSIEM.MELNOAHEID ..o e e e 39
SYSIEMMUITICAIL ... e e 40
L1, EXBIMPIES ettt 41
XML-RPC client: State NAME QUETYcevuriiiiiieeeeiiie ettt e et e et e e e eees 41
Executing @ mMUItiCall Callcooeiiiiiii e 41
12. Frequently ASKEd QUESLIONSuuiiiitieeiei ettt e et e e 42
How to send custom XML as payload of amethod callccooiiiiiiiiiiiiincen, 42
Isthere any limitation on the size of the requests/ responses that can be successfully
LS 0 SRR 42
My server (client) returns an error whenever the client (server) returns accented
ChAIBELEN'S ...ttt ettt e 42
How to enable long-lasting method CallS 42
My client returns " XML-RPC Fault #2: Invalid return payload: enable debugging to
examine incoming payload": what should | dO?ooeiiiiiiiiiiiiii e, 43
How can | save to afile the xml of the xmlrpc responses received from servers?.............. 43
Can | use the ms Windows CharaCler SEL?viveueiiieee e 43
Does the library support using cookies / http SESSIONS?oveuiviiiiiiieeee e 44
A. Integration with the PHP XMIrpc eXtENSIONiiiiiiiiiiiiiieeei e 45
B. Substitution of the PHP XMIrpC eXteNSIONc.uuuiiiiiiiiiiiiiiie e 46
C. 'Enough of xmlrpcvals!’: new style library USagecoouuiiiiiiiiiniiiiiieec e 47
D. Usage Of the EDUGOESuuniiiii et 48

Chapter 1. Introduction

XML-RPC is a format devised by Userland Software [http://www.userland.com/] for achieving
remote procedure call via XML using HTTP as the transport. XML-RPC has its own web site,
www.xmlrpc.com [http://www.xmlrpc.com/]

Thiscollection of PHP classes providesaframework for writing XML-RPC clientsand serversin PHP.
Main goals of the project are ease of use, flexibility and completeness.

The original author is Edd Dumbill of Useful Information Company [http://usefulinc.com/]. As of the
1.0 stable release, the project was opened to wider involvement and moved to SourceForge [http://
phpxmlrpc.sourceforge.net/]; later, to Github [https://github.com/]

A list of XML-RPC implementations for other languages such as Perl and Python can be found on the
www.xmlrpc.com [http://www.xmlrpc.com/] site.

Acknowledgements

Daniel E. Baumann
James Bercegay
Leon Blackwell
Stephane Bortzmeyer
Daniel Convissor
Geoffrey T. Dairiki
Stefan Esser

James Flemer

Ernst de Haan

Tom Knight

Axel Kollmorgen
Peter Kocks

Daniel Krippner

S. Kuip

A. Lambert

Frederic Lecointre
Dan Libby

Arnaud Limbourg
Ernest MacDougal Campbell 111
Lukasz Mach

Kjartan Mannes

http://www.userland.com/
http://www.userland.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://usefulinc.com/
http://usefulinc.com/
http://phpxmlrpc.sourceforge.net/
http://phpxmlrpc.sourceforge.net/
http://phpxmlrpc.sourceforge.net/
https://github.com/
https://github.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/

Introduction

Ben Margolin
Nicolay Mausz
Justin Miller

Jan Pfeifer
Giancarlo Pinerolo
Peter Russel
Jean-Jacques Sarton
Viliam Simko

Idan Sofer

Douglas Squirrel
Heiko Stiibner
Anatoly Techtonik
Tommaso Trani
Eric van der Vlist
Christian Wenz

Jim Winstead
Przemyslaw Wroblewski

Bruno Zanetti M€l otti

Chapter 2. What's new

Note: not al itemsthefollowing list have (yet) been fully documented, and some might not be present
in any other chapter in the manual. To find amore detailed description of new functions and methods
please take alook at the source code of the library, which is quite thoroughly commented in javadoc-
like form.

» Thisrelease makes the library compatible with php 7 by removing the deprecation warnings

» addition of a'setSSL Version' method to the client class

« fixed: the library does not decode correctly LATIN-1 requests/responses if the character set is not
set in the xml prolog

« fixed: the debugger sends incorrect requests when the payload includes LATIN-1 characters

« fixed: theclient can not call remote methodswhich use LATIN-1 or UTF8 charactersin their names

3.0.0

Note: thisisthelast release of the library that will support PHP 5.1 and up. Future releases will target
php 5.3 as minimum supported version.

» when using curl and keepalive, reset curl handle if we did not get back an http 200 response (eg
a302)

 omit port on http 'Host' header if itis 80

test suite allows interrogating https serversignoring their certs

method setAcceptedCompression was failing to disable reception of compressed responses if the
client supported them

3.0.0 beta

Thisisthefirst release of thelibrary to only support PHP 5. Some legacy code has been removed, and
support for features such as exceptions and dateTime objects introduced.

The "beta" tag is meant to indicate the fact that the refactoring has been more widespread than in
precedent releases and that more changes are likely to be introduced with time - the library is still
considered to be production quality.

 improved: removed all usage of php functions deprecated in php 5.3, usage of assign-by-ref when
creating new objects etc...

 improved: add support for the <ex:nil/> tag used by the apache library, both in input and output

 improved: add support for dat eTi e objectsinbothinphp_xmi r pc_encode and asparameter
for constructor of xm r pcval

 improved: add support for timestamps as parameter for constructor of xmi r pcval

What's new

2.2.2

improved: add option 'dates_as objects to php_xni r pc_decode to return dat eTi ne objects
for xmlrpc datetimes

improved: add new method Set Cur | Opt i ons toxnr| pc_cl i ent toalow extraflexibility in
tweaking http config, such as explicitly binding to an ip address

improved: add new method Set User Agent to xnr | pc_cl i ent toto alow having different
user-agent http headers

improved: add anew member variablein server classto alow fine-tuning of the encoding of returned
values when the server isin 'phpvals mode

improved: alow serversin 'xmlrpcvals mode to also register plain php functions by defining them
in the dispatch map with an added option

improved: catch exceptions thrown during execution of php functions exposed as methods by the
server

fixed: bad encoding if same object is encoded twice using php_xmirpc_encode

Note: this might the last release of the library that will support PHP 4. Future releases (if any) should
target php 5.0 as minimum supported version.

2.2.1

fixed: encoding of utf-8 characters outside of the BMP plane

fixed: character set declarations surrounded by double quotes were not recognized in http headers
fixed: be more tolerant in detection of charset in http headers

fixed: fix detection of zlib.output_compression

fixed: use feof() to test if socket connections are to be closed instead of the number of bytes read
(rare bug when communicating with some servers)

fixed: format floating point values using the correct decimal separator even when php locale is set
to one that uses comma

fixed: improve robustness of the debugger when parsing weird results from non-compliant servers
php warning when receiving ‘false' in abool value
improved: allow the add_to_map server method to add docs for single params too

improved: added the possibility to wrap for exposure as xmlrpc methods plain php class methods,
object methods and even whole classes

fixed: work aroung bug in php 5.2.2 which broke support of HTTP_RAW_POST_DATA
fixed: is_dir parameter of setCaCertificate() method is reversed

fixed: a php warning in xmlrpc_client creator method

fixed: parsing of '1e+1' asvalid float

fixed: allow errorlevel 3 to work when prev. error handler was a static method

fixed: usage of client::setcookie() for multiple cookies in non-ss mode

What's new

2.2

2.1

improved: support for CP1252 charset is not part or the library but almost possible

improved: more info when curl is enabled and debug mode ison

fixed: debugger errors on php installs with magic_quotes gpc on

fixed: support for https connections via proxy

fixed: wrap_xmirpc_method() generated code failed to properly encode php objects
improved: dlightly faster encoding of datawhich isinternally UTF-8

improved: debugger aways generates a'null’ id for jsonrpc if user omits it

new: debugger can take advantage of a graphical value builder (it has to be downloaded separately,
as part of jsxmirpc package. See Appendix D for more details)

new: support for the <NIL/> xmlrpc extension. see below for more details
new: server support for the system.getCapabilities xmlrpc extension

new: w ap_xm rpc_net hod() [33] acceptstwo new options. debug and return_on fault

The wr ap_php_functi on and w ap_xnl r pc_nmnet hod functions have been moved out of
the base library file xm r pc. i nc into a file of their own: xm r pc_w appers.inc. You
will have to include() / require() it in your scripts if you have been using those functions.
For increased security, the automatic rebuilding of php object instances out of received xmlrpc
structs in wr ap_xml r pc_mnet hod() has been disabled (but it can be optionally re-enabled).
Bothw ap_php_function() andw ap_xm r pc_net hod() functions accept many more
options to fine tune their behaviour, including one to return the php code to be saved and later used
as standalone php script

The constructor of xmlrpcval() values has seen some internal changes, and it will not throw a php
warning anymore when invoked using an unknown xmirpc type: the error will only be written to
php error log. Alsonew xm rpcval (' true', 'bool ean') isnot supported anymore

The new function php_xm r pc_decode_xm () will take the xml representation of either an
xmlrpc request, response or single value and return the corresponding php-xmlrpc object instance

A new functionwr ap_xnl r pc_ser ver () has been added, to wrap all (or some) of the methods
exposed by a remote xmlirpc server into a php class

A new filehasbeenadded: veri fy_conpat . php, tohelp usersdiagnosethelevel of compliance
of their php installation with the library

Restored compatibility with php 4.0.5 (for those poor souls still stuck on it)

Method xmi r pc_server - >servi ce() now returns a value: either the response payload or
xmlrpcresp object instance

Method xm rpc_server->add_t o_map() now accepts xmirpc methods with no param
definitions

Documentation for single parameters of exposed methods can be added to the dispatch map (and
turned into html docs in conjunction with a future release of the 'extras package)

Full response payload is saved into xmlrpcresp object for further debugging

What's new

» The debugger can now generate code that wraps a remote method into a php function (works for
jsonrpc, too); it also has better support for being activated viaasingle GET call (e.g. for integration
into other tools)

* Stricter parsing of incoming xmlrpc messages. two more invalid cases are now detected (double
dat a element insidear r ay and st r uct /ar r ay after scalar insideval ue element)

» Morelogging of errorsin alot of situations
* Javadoc documentation of lib files (almost) complete

» Many performance tweaks and code cleanups, plus the usual crop of bugs fixed (see NEWS file
for complete list of bugs)

 Libinternals have been modified to provide better support for grafting extrafunctionality on top of
it. Stay tuned for future releases of the EXTRAS package (or go read Appendix B)...

2.0 final

» Added to the client class the possibility to use Digest and NTLM authentication methods (when
using the CURL library) for connecting to servers and NTLM for connecting to proxies

» Added to the client class the possibility to specify aternate certificate files/directories for
authenticating the peer with when using HTTPS communication

* Reviewed all examples and added a new demo file, containing a proxy to forward xmlrpc requests
to other servers (useful e.g. for ajax coding)

» The debugger has been upgraded to reflect the new client capabilities

 All known bugs have been squashed, and the lib is more tolerant than ever of commonly-found
mistakes

2.0 Release candidate 3

» Addedto server classthe property functions_parameters_type, that allowsthe server toregister plain
php functions as xmlrpc methods (i.e. functions that do not take an xmlrpcmsg object as unique
param)

* let server and client objects serialize calls using a specified character set encoding for the produced
xml instead of US-ASCII (1SO-8859-1 and UTF-8 supported)

* let php_xmirpc_decode accept xmlrpecmsg objects as valid input
* ‘class::method' syntax is now accepted in the server dispatch map

« xm rpc_cl ent:: Set Debug() accepts integer values instead of a boolean value, with
debugging level 2 adding to the information printed to screen the complete client request

2.0 Release candidate 2

» Added a new property of the client object: xm rpc_client->return_type, indicating
whether calls to the send() method will return xmlrpcresp objects whose value() is an xmlrpcval
object, aphp value (automatically decoded) or the raw xml received from the server.

* Added in the extras dir. two new library file: j sonr pc. i nc and j sonrpcs. i nc containing
new classes that implement support for the json-rpc protocol (alpha quality code)

» Added anew client method: set Key($key, $keypass) to beused in HTTPS connections

What's new

» Added anew file containing some benchmarks in the testsuite directory

2.0 Release candidate 1

 Support for HTTP proxies (new method: xm r pc_cl i ent:: set Proxy())

» Support HTTP compression of both requests and responses. Clients can specify what kind
of compression they accept for responses between deflate/gzip/any, and whether to compress
the requests. Servers by default compress responses to clients that explicitly declare support
for compression (new methods: xm rpc_client::set Accept edConpression(),
xm rpc_client::set Request Conpressi on()). Notethat the ZLIB php extension needs
to be enabled in PHP to support compression.

* Implement HTTP 1.1 connections, but only if CURL is enabled (added an extra parameter to
xm rpc_client::xmrpc_client tosetthe desired HTTP protocol at creation time and a
new supported valuefor thelast parameter of xim r pc_cl i ent : : send, which now canbe safely
omitted if it has been specified at creation time)

With PHP versions greater than 4.3.8 keep-alives are enabled by default for HTTP 1.1 connections.
This should yield faster execution times when making multiple calls in sequence to the same xml-
rpc server from asingle client.

* Introduce support for cookies. Cookies to be sent to the server with a request can be set
usingxm rpc_client:: set Cooki e(), while cookies received from the server are found in
xm rpcresp: : cooki es() . It isleft to the user to check for validity of received cookies and
decide whether they apply to successive calls or not.

 Better support for detecting different character set encodings of xml-rpc requests and responses:
both client and server objects will correctly detect the charset encoding of received xml, and use
an appropriate xml parser.

Supported encodings are US-ASCII, UTF-8 and 1SO-8859-1.

» Added one new xmlrpcmsg constructor syntax, allowing usage of a single string with the complete
URL of thetarget server

» Convert xml-rpc boolean values into native php valuesinstead of 0 and 1

» Force the php_xm r pc_encode function to properly encode numerically indexed php arrays
into xml-rpc arrays (numerically indexed php arrays always start with a key of 0 and increment
keys by values of 1)

» Prevent the php_xm rpc_encode function from further re-encoding any objects of class
xm rpcval that are passed to it. This allows to call the function with arguments consisting of
mixed php values/ xmirpcval objects.

e Allow a server to NOT respond to system* method calls (setting the $server-
>al | ow_syst em f uncs property).

* Implement anew xmlrpcval method to determine if avalue of type struct has a member of agiven
name without having to loop trough all members. xm r pcval : : st ruct MenExi st s()

» Expand methodsxmi r pcval : : addArr ay, addScal ar andaddSt r uct alowing extraphp
values to be added to xmlrpcval objects already formed.

* Let the xm rpc_client::send method accept an XML string for sending instead of an
xmlrpcmsg object, to facilitate debugging and integration with the php native xmirpc extension

» Extendthephp_xm rpc_encode and php_xm r pc_decode functionsto allow serialization
and rebuilding of PHP objects. To successfully rebuild a serialized object, the object class must be

What's new

defined in the deserializing end of the transfer. Note that object members of type resource will be
deserialized as NULL values.

Note that his has been implemented adding a "php_class' attribute to xml representation of
xmirpeval of STRUCT type, which, strictly speaking, breaks the xml-rpc spec. Other xmlrpc
implementations are supposed to ignore such an attribute (unless they implement a brain-dead
custom xml parser...), so it should be safe enabling it in heterogeneous environments. The
activation of this feature is done by usage of an option passed as second parameter to both
php_xm r pc_encode and php_xm r pc_decode.

Extend the php_xm r pc_encode function to allow automatic seriaization of is08601-
conforming php strings as datetime.iso8601 xmlrpcvals, by usage of an optional parameter

Added an automatic stub code generator for converting xmlrpc methods to php functions and vice-
versa

Thisis done viatwo new functions: wr ap_php_functi on andw ap_xm r pc_net hod, and
has many cavests, with php being atypeless language and all...

With PHPversionslesser than 5.0.3 wrapping of php functionsinto xmlrpc methodsisnot supported
yet.

Allow object methods to be used in server dispatch map
Added a complete debugger solution, in thedebugger folder

Added configurable server-side debug messages, controlled by the new method
xm rpc_server: : Set Debug() . At level 0, no debug messages are sent to the client; level 1
is the same as the old behaviour; at level 2 alot more info is echoed back to the client, regarding
the received call; at level 3 all warnings raised during server processing are trapped (this prevents
breaking the xml to be echoed back to the client) and added to the debug info sent back to the client

New XML parsing code, yields smaller memory footprint and faster execution times, not to mention
complete elimination of the dreaded eval () construct, so proneto code injection exploits

Rewritten most of the error messages, making text more explicative

Chapter 3. System Requirements

The library has been designed with goals of scalability and backward compatibility. As such, it
supports a wide range of PHP installs. Note that not al features of the lib are available in every
configuration.

The minimum supported PHP version is 5.1.

If youwishtouse SSL or HTTP 1.1 to communicate with remote servers, you need the " curl" extension
compiled into your PHP installation.

The "xmlirpc" native extension is not required to be compiled into your PHP installation, but if it is,
there will be no interference with the operation of thislibrary.

lib/xmlrpc.inc

lib/xmlrpcs.inc

lib/xmlrpc_wrappers.inc

demo/server/proxy.php

demo/server/server.php

demo/client/client.php, demo/
client/agesort.php, demo/client/
which.php

demo/client/wrap.php

demol/client/introspect.php

demolclient/mail.php

demo/client/zopetest.php
demo/vardemo.php
demo/demol.txt, demo/

demo?2.txt, demo/demo3.txt

demo/server/discuss.php,
demo/client/comment.php

test/testsuite.php, test/
parse_args.php

test/benchmark.php

test/phpunit.php, test/PHPUnit/
*.php

test/verify _compat.php

extragitest.pl, extras/test.py

Chapter 4. Files in the distribution

the XML-RPC classes.i ncl ude() thisinyour PHPfilesto use
the classes.

the XML-RPC server class. i ncl ude() this in addition to
xmirpc.inc to get server functionality

helper functions to "automagically" convert plain php functions
to xmlrpc services and vice versa

a sample server implementing xmlrpc proxy functionality.

a sample server hosting various demo functions, as well as afull
suite of functions used for interoperability testing. It is used by
testsuite.php (see below) for unit testing the library, and is not to
be copied literaly into your production servers

client code to exercise some of the functions in server.php,
including the interopEchoTests. whichTool kit
method.

client code to illustrate 'wrapping' of remote methods into php
functions.

client codetoillustrate usage of introspection capabilities offered
by server.php.

client code to illustrate usage of an xmirpc-to-email gateway
using Dave Winer's XML-RPC server at userland.com.

example client code that queries an xmlirpc server built in Zope.
examples of how to construct xmlrpcval types

XML-RPC responses captured in afile for testing purposes (you
can use these to test the xm r pcnsg- >par seResponse()
method).

Software used in the PHP chapter of The Jellyfish Book to provide
acomment server and allow the attachment of commentsto stories
from Meerkat's data store.

A unit test suite for this software package. If you do devel opment
on this software, please consider submitting tests for this suite.

A (very limited) benchmarking suite for this software package. If
you do devel opment on this software, please consider submitting
benchmarks for this suite.

An (incomplete) version PEAR's unit test framework for PHP.
The complete package can be found at http://pear.php.net/
package/PHPUnNit

Script designed to help the user to verify thelevel of compatibility
of the library with the current php install

Perl and Python programs to exercise server.php to test that some
of the methods work.

10

http://pear.php.net/package/PHPUnit
http://pear.php.net/package/PHPUnit

Filesin the distribution

extras/ Frontier scripts to exercise the demo server. Thanks to Dave
workspace.testPhpServer.ftth Winer for permission to include these. See Dave's announcement
of these. [http://www.xmlrpc.com/discuss/msgReader$853]

extras/rsakey.pem A test certificate key for the SSL support, which can be used to
generate dummy certificates. It has the passphrase "test."

11

http://www.xmlrpc.com/discuss/msgReader$853
http://www.xmlrpc.com/discuss/msgReader$853
http://www.xmlrpc.com/discuss/msgReader$853

Chapter 5. Known bugs and
limitations

This started out as a bare framework. Many "nice" bits haven't been put in yet. Specificaly, very little
type validation or coercion has been put in. PHP being aloosely-typed language, thisis going to have
to be done explicitly (in other words: you can call alot of library functions passing them arguments
of the wrong type and receive an error message only much further down the code, where it will be
difficult to understand).

dateTime.iso8601 is supported opaquely. It can't be done natively as the XML-RPC specification
explicitly forbids passing of timezone specifiersin 1SO8601 format dates. Y ou can, however, use the
is08601_encode() and iso8601 decode() functionsto do the encoding and decoding for you.

Very little HTTP response checking is performed (e.g. HTTP redirects are not followed and the
Content-Length HTTP header, mandated by the xml-rpc spec, is not validated); cookie support still
involves quite a bit of coding on the part of the user.

If a specific character set encoding other than US-ASCII, 1SO-8859-1 or UTF-8 is received in the
HTTP header or XML prologue of xml-rpc request or response messages then it will be ignored for
the moment, and the content will be parsed as if it had been encoded using the charset defined by
xmirpc_defencoding

Support for receiving from servers version 1 cookies (i.e. conforming to RFC 2965) is quite
incomplete, and might cause unforeseen errors.

12

Chapter 6. Support
Online Support

XML-RPC for PHP is offered "as-is' without any warranty or commitment to support. However,
informal advice and help is available viathe XML-RPC for PHP website and mailing list and from
XML-RPC.com.

» The XML-RPC for PHP development is hosted on github.com/gggeek/phpxmlrpc [https://
github.com/gggeek/phpxmlrpc]. Bugs, feature requests and patches can be posted to the project's
website [https://github.com/gggeek/phpxmirpc/issues)].

» ThePHP XML-RPC interest mailing list isrun by the author. More detail s can be found here [http://
lists.gnomehack.com/mailman/listinfo/phpxmlrpc].

» For more general XML-RPC questions, there is a Yahoo! Groups XML-RPC mailing list [http://
groups.yahoo.com/group/xml-rpc/].

» The XML-RPC.com [http://www.xmlrpc.com/discuss] discussion groupisauseful placeto get help
with using XML-RPC. This group is aso gatewayed into the Y ahoo! Groups mailing list.

The Jellyfish Book

CrROLLY

Together with Simon St.Laurent and Joe Johnston, Edd Dumbill wrote a book on XML-RPC for
O'Rellly and Associates on XML-RPC. It features arather fetching jellyfish on the cover.

Complete details of the book are available from O'Reilly's web site. [http://www.oreilly.com/catal og/
progxmirpc/]

Edd is responsible for the chapter on PHP, which includes a worked example of creating a forum
server, and hooking it up the O'Reilly's Meerkat [http://meerkat.oreillynet.com/] service in order to
allow commenting on news stories from around the Web.

If you've benefited from the effort that has been put into writing this software, then please consider
buying the book!

13

https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc/issues
https://github.com/gggeek/phpxmlrpc/issues
https://github.com/gggeek/phpxmlrpc/issues
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://groups.yahoo.com/group/xml-rpc/
http://groups.yahoo.com/group/xml-rpc/
http://groups.yahoo.com/group/xml-rpc/
http://www.xmlrpc.com/discuss
http://www.xmlrpc.com/discuss
http://www.oreilly.com/catalog/progxmlrpc/
http://www.oreilly.com/catalog/progxmlrpc/
http://www.oreilly.com/catalog/progxmlrpc/
http://meerkat.oreillynet.com/
http://meerkat.oreillynet.com/

Chapter 7. Class documentation

xmlrpcval

Thisis where alot of the hard work gets done. This class enables the creation and encapsulation of
valuesfor XML-RPC.

Ensure you've read the XML-RPC spec at http://www.xmlrpc.com/stories/storyReader$7 before
reading on asit will make things clearer.

Thexm r pcval class can store arbitrarily complicated values using the following types: i 4 i nt
bool ean string double dateTine.iso8601 base64 array struct null.You
should refer to the spec [http://www.xmlrpc.com/spec] for more information on what each of these
types mean.

Notes on types
int

The typei 4 is accepted as a synonym for i nt when creating xmlrpcval objects. The xml parsing
code will always converti 4 toi nt : i nt isregarded by this implementation as the canonical name
for thistype.

base64

Base 64 encoding is performed transparently to the caller when using this type. Decoding is also
transparent. Therefore you ought to consider it asa"binary" datatype, for use when you want to pass
data that is not 7-bit clean.

boolean

Thephpvauest rue and1 maptot r ue. All other values (including the empty string) are converted
tof al se.

string

Characters <, >, ', ", &, are encoded using their entity reference as &It; > ' " and
& All other characters outside of the ASCII range are encoded using their character reference
representation (e.g. È for €). The XML-RPC spec recommends only encoding < & but
this implementation goes further, for reasons explained by the XML 1.0 recommendation [http://
www.w3.0rg/TR/REC-xml#syntax]. In particular, using character reference representation has the
advantage of producing XML that is valid independently of the charset encoding assumed.

null
Thereisno support for encoding nul | valuesinthe XML-RPC spec, but at |east acouple of extensions

(and many toolkits) do support it. Before using nul | values in your messages, make sure that the
responding party accepts them, and uses the same encoding convention (see ...).

Creation

The constructor isthe normal way to create an xnl r pcval . The constructor can take these forms:
xm rpcval new xm rpcval (void)

xm rpcval new xm rpcval (string $stringVval)

14

http://www.xmlrpc.com/stories/storyReader$7
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.w3.org/TR/REC-xml#syntax
http://www.w3.org/TR/REC-xml#syntax
http://www.w3.org/TR/REC-xml#syntax

Class documentation

xm rpcval new xm rpcval (m xed $scalarVal, string $scalartyp)
xm rpcval new xm rpcval (array $arrayVal, string $arraytyp)

Thefirst constructor creates an empty value, which must be altered using the methods addScal ar ,
addAr ray or addSt r uct beforeit can be used.

The second constructor creates a simple string value.

Thethird constructor isused to create ascalar value. The second parameter must beaname of an XML-

RPC type. Vdid types are: "i nt ",
"base64" or "null".

bool ean”, "stri ng", "doubl e", "dat eTi me. i so8601",

Examples:

$nmylnt = new xml rpcval ue(1267, "int");

$nmyString = new xm rpcval ue("Hello, Wrld!", "string");

$nmyBool = new xml rpcval ue(1, "bool ean");

$nmyString2 = new xm rpcval ue(1.24, "string"); // note: this will serialize a php float value as xnl

The fourth constructor form can be used to compose complex XML-RPC values. The first argument
is either a simple array in the case of an XML-RPC ar r ay or an associative array in the case of a
st ruct . The elements of the array must be xm r pcval objects themselves.

The second parameter must be either "ar r ay"” or "str uct .

Examples:

$nyArray = new xmi rpcval (
array(
new xm rpcval (" Tonl'),
new xm rpcval ("Di ck"),
new xml rpcval ("Harry")
)

’”aY");

/'l recursive struct
$nyStruct = new xni rpcval (

array(
"name" => new xml rpcval ("Tont, "string"),
"age" => new xm rpcval (34, "int"),
"address" => new xmnl rpcval (
array(
"street" => new xm rpcval ("Fifht Ave", "string"),

"city" => new xml rpcval ("NY", "string")
)

"struct")

)

truct");

Seethefilevar deno. php in thisdistribution for more examples.

Methods

addScalar
int addScalar (string $stringVval)
int addScal ar (m xed $scalarVal, string $scalartyp)
If $val isanempty xm r pcval this method makesit a scalar value, and sets that value.
If $val isalready ascalar value, then no more scalars can be added and 0 is returned.

If $val isan xmirpeva of type array, the php value $scal ar val isadded asitslast element.

15

Class documentation

If all went OK, 1 isreturned, otherwise 0.

addArray

int addArray (array $arrayVval)

Theargument isasimple (numerically indexed) array. The elementsof thearray must bexm r pcval
objects themsel ves.

Turnsan empty xm r pcval intoanar r ay with contents as specified by $ar r ayVal .
If $val isanxmirpcval of typearray, theelementsof $ar r ayVal areappended to the existing ones.
See the fourth constructor form for more information.

If all went OK, 1 isreturned, otherwise 0.

addStruct

int addStruct (array $assocArrayVal)

The argument is an associative array. The elements of the array must be xml r pcval objects
themsel ves.

Turnsan empty xm r pcval intoast ruct with contents as specified by $assocAr r ayVal .
If $val isanxmirpcval of type struct, theelementsof $ar r ayVal aremerged with the existing ones.
See the fourth constructor form for more information.

If all went OK, 1 isreturned, otherwise 0.

kindOf
string kindOF (void)

Returns a string containing "struct”, "array" or "scalar" describing the base type of the value. If it
returns "undef” it means that the value hasn't been initialised.

serialize

string serialize (void)

Returns a string containing the XML-RPC representation of this value.
scalarVal

m xed scal arval (void)

If $val - >ki ndOF () == "scal ar", this method returns the actual PHP-language value of the
scalar (base 64 decoding is automatically handled here).

scalarTyp
string scalarTyp (void)

If $val - >ki ndOf () == "scal ar", thismethod returns a string denoting the type of the scalar.
Asmentioned before, i 4 isawayscoercedtoi nt .

arrayMem

xm rpcval arrayMem (int $n)

16

Class documentation

If $val - >ki ndOF () == "array", returnsthe $nth element in the array represented by the value
$val . Thevaluereturnedisan xm r pcval object.

/] iterating over values of an array object
for ($i = 0; $i < $val ->arraySi ze(); $i++)

$v = $val ->arrayMen($i);

echo "Elenent $i of the array is of type ".$v->ki ndOf ();
}

arraySize

int arraySize (void)

If $val isanar r ay, returns the number of elementsin that array.
structMem

xm rpcval structMem (string $nenber Name)

If $val - >ki ndOF () == "struct", returnsthe element called $menber Nane from the struct
represented by the value $val . The valuereturned isan xnl r pcval object.

structEach

array structEach (void)
Returns the next (key, value) pair from the struct, when $val isastruct. $val ue isan xmirpcva
itself. See also structreset().

I/ iterating over all values of a struct object
$val - >structreset ();
while (list($key, $v) = $val ->struct Each())

echo "El enent $key of the struct is of type ".$v->ki ndOf () ;
}

structReset

void structReset (void)

Resetstheinternal pointer for st r uct Each() tothebeginning of the struct, where $val isastruct.
structMemEXxists

bool structMenExsists (string $nenber Nane)

Returns TRUE or FAL SE depending on whether a member of the given name existsin the struct.

xmlrpcmsg

This class provides a representation for a request to an XML-RPC server. A client sends an
xm r pcnsg to aserver, and receives back an xm r pcr esp (see xmlrpc_client->send).

Creation

The constructor takes the following forms:

xm rpcnsg new xm rpensg (string $nmet hodNanme, array $paraneterArray
= null)

17

Class documentation

Where et hodNane is a string indicating the name of the method you wish to invoke, and
par amet er Array isasimple php Arr ay of xm r pcval objects. Here's an example message to
the US state name server:

$nsg = new xnlrpcnsg(" exanpl es. get St at eNane", array(new xm rpcval (23, "int")));

This example requests the name of state number 23. For more information on xm r pcval objects,
see xmirpeval.

Note that the par amet er Ar r ay parameter is optional and can be omitted for methods that take no
input parameters or if you plan to add parameters one by one.

Methods

addParam

bool addParam (xm rpcval $xmrpcVval)

Adds the xm r pcval xm r pcVal to the parameter list for this method call. Returns TRUE or
FALSE on error.

getNumParams

int getNunmParans (void)

Returns the number of parameters attached to this message.

getParam
xm rpcval getParam (int $n)

Gets the nth parameter in the message (with the index zero-based). Use this method in server
implementations to retrieve the values sent by the client.

method
string nmethod (void)
string nmethod (string $nmethNane)

Gets or sets the method contained in the XML-RPC message.

parseResponse
xm rpcresp parseResponse (string $xm String)

Given an incoming XML-RPC server response contained in the string $xm St ri ng, this method
constructs an xmi r pcr esp response object and returns it, setting error codes as appropriate (see
xmlrpc_client->send).

This method processes any HTTP/MIME headers it finds.
parseResponseFile

xm rpcresp parseResponseFile (file handle resource $fil eHandl e)

Given an incoming XML-RPC server response on the open file handle f i | eHandl e, this method
reads all the data it finds and passesit to par seResponse.

18

Class documentation

This method is useful to construct responses from pre-prepared files (see files denol. t xt,
denp2. txt, denp3.txt inthisdistribution). It processes any HTTP headers it finds, and does
not close the file handle.

serialize
string serialize (void)

Returns the an XML string representing the XML-RPC message.

xmlrpc_client

Thisisthe basic class used to represent a client of an XML-RPC server.

Creation

The constructor accepts one of two possible syntaxes:
xm rpc_client new xmrpc_client (string $server_url)

xmrpc_client new xmrpc client (string S$server_path, string
$server _hostnane, int $server port = 80, string $transport ="'http')

Here are a couple of usage examples of the first form:

$client = new xm rpc_client("http://phpxm rpc. sourceforge. net/server. php");
$anot her _client = new xmrpc_client("https://janes: bond@ecret. service.com 443/ xm rpcser ver ?agent =0

The second syntax does not allow to express a username and password to be used for basic HTTP
authorization as in the second example above, but instead it allows to choose whether xmlrpc calls
will be made using the HTTP 1.0 or 1.1 protocol.

Here's another example client set up to query Userland's XML-RPC server at betty.userland.com:

$client = new xmrpc_client("/RPC2", "betty.userland.coni, 80);

Theserver _port parameter is optional, and if omitted will default to 80 when using HTTP and
443 when using HTTPS (see the xmlrpc_client->send method below).

Thet r ansport parameter isoptional, and if omitted will default to 'http'. Allowed values are either
‘http', 'https or 'httpl1'. Its value can be overridden with every call to the send method. Seethesend
method bel ow for more details about the meaning of the different values.

Methods

This class supports the following methods.

send
This method takes the forms:

xm rpcresp send (xmrpcnsg $xm rpc_nessage, int $tinmeout, string
$transport)

array send (array $xm rpc_nessages, int $timeout, string $transport)

xmrpcresp send (string $xm _payload, int $tineout, string
$transport)

19

Class documentation

Where xm r pc_nessage is an instance of xm r pcnsg (see xmlrpcmsg), and r esponse isan
instance of X r pcr esp (see xmlrpcresp).

If xmrpc_nessages is an array of message instances, r esponses will be an array of
response instances. The client will try to make use of a single system nul ti cal | xml-rpc
method call to forward to the server all the messagesin asingle HTTP round trip, unless$cl i ent -
>no_nul ti cal | hasbeen previously set to TRUE (see the multicall method below), in which case
many consecutive xmlrpc requests will be sent.

Thethird syntax allowsto build by hand (or any other means) acomplete xmlrpc request message, and
sendittotheserver. xm _payl oad should be a string containing the complete xml representation of
therequest. Itise.g. useful when, for maximal speed of execution, therequest isserialized into astring
using the native php xmirpc functions (see the php manual on xmirpc [http://www.php.net/xmirpc]).

The ti meout is optiona, and will be set to O (wait for platform-specific predefined timeout) if
omitted. Thistimeout valueispassedto f sockopen() . It isaso used for detecting server timeouts
during communication (i.e. if the server does not send anything to the client for t i meout seconds,
the connection will be closed).

Thet r ansport parameter isoptional, and if omitted will default to the transport set using instance
creator or 'http' if omitted. The only other valid values are 'https, which will use an SSL HTTP
connection to connect to the remote server, and 'http11'. Note that your PHP must have the "curl"
extension compiled in order to use both these features. Note that when using SSL you should normally
set your port number to 443, unlessthe SSL server you are contacting runs at any other port.

Warning
PHP 4.0.6 has a bug which prevents SSL working.

In addition to low-level errors, the XML-RPC server you were querying may return an error in the
xm r pcr esp object. See xmlrpcresp for details of how to handle these errors.

multiCall
This method takes the form:

array nmultiCall (array $nessages, int $timeout, string $transport,
bool $fall back)

This method is used to boxcar many method callsin asingle xml-rpc request. It will try first to make
use of the system mul ti cal | xml-rpc method call, and fall back to executing many separate
requests if the server returns any error.

negs is an array of xm rpcneg objects (see xmlrpcmsg), and r esponse is an array of
xm r pcr esp objects (see xmirpcresp).

Theti meout andt ransport parametersare optional, and behave asin the send method above.

Thef al | back parameter is optional, and defaults to TRUE. When set to FALSE it will prevent the
client to try using many single method calls in case of failure of the first multicall request. It should
be set only when the server is known to support the multicall extension.

setAcceptedCompression
voi d set Accept edCompression (string $conpressi onnet hod)

This method defines whether the client will accept compressed xml payload forming the bodies of
the xmlrpc responses received from servers. Note that enabling reception of compressed responses
merely adds some standard http headers to xmlrpc requests. It is up to the xmlrpc server to return

20

http://www.php.net/xmlrpc
http://www.php.net/xmlrpc

Class documentation

compressed responses when receiving such requests. Allowed values for conpr essi onnet hod
are: 'gzip', 'deflate’, 'any' or null (with any meaning either gzip or deflate).

This requires the "zlib" extension to be enabled in your php instal. If it is, by default
xm rpc_cli ent instanceswill enable reception of compressed content.

setCaCertificate
void setCaCertificate (string $certificate, bool $is_dir)

Thismethod setsan optional certificate to be used in SSL-enabled communication to validate aremote
server with (when the ser ver _net hod is set to 'https' in the client's construction or in the send
method and Set SSL Ver i f ypeer hasbeen set to TRUE).

Thecerti fi cat e parameter must be the filename of a PEM formatted certificate, or a directory
containing multiple certificate files. The i s_di r parameter defaults to FALSE, set it to TRUE to
specify that certi fi cat e indicates adirectory instead of asinglefile.

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for thecur | _set opt function.

setCertificate

void setCertificate (string $certificate, string $passphrase)

This method sets the optional certificate and passphrase used in SSL-enabled communication with a
remote server (when the ser ver _mret hod is set to 'https' in the client's construction or in the send
method).

The certificate parameter must be the filename of a PEM formatted certificate. The
passphr ase parameter must contain the password required to use the certificate.

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for thecur | _set opt function.

Note: to retrieve information about the client certificate on the server side, you will need to look into
the environment variables which are set up by the webserver. Different webservers will typicaly set
up different variables.

setCookie

voi d set Cookie (string $name, string $value, string $path, string
$domai n, int $port)

Thismethod setsa cookiethat will be sent to the xmlirpc server along with every further request (useful
e.g. for keeping session info outside of the xml-rpc payload).

$val ue isoptional, and defaultsto null.

$path, $domain and $port are optional, and will be omitted from the cookie header if
unspecified. Note that setting any of these values will turn the cookie into a 'version 1' cookie, that
might not be fully supported by the server (see RFC2965 for more details).

setCredentials

void setCredentials (string $usernane, string $password, int
$aut ht ype)

This method sets the username and password for authorizing the client to a server. With the
default (HTTP) transport, thisinformation is used for HTTP Basic authorization. Note that username

21

Class documentation

and password can also be set using the class constructor. With HTTP 1.1 and HTTPS transport,
NTLM and Digest authentication protocols are also supported. To enable them use the constants
CURLAUTH_DI GEST and CURLAUTH_NTLMas values for the authtype parameter.

setCurlOptions
void setCurl Options (array $options)

This method alows to directly set any desired option to manipulate the usage of the cURL client
(when in cURL mode). It can be used eg. to explicitly bind to an outgoing ip address when the server
is multihomed

setDebug

voi d set Debug (int $debugLvl)

debugLvl iseither 0, 1 or 2 depending on whether you require the client to print debugging
information to the browser. The default is not to output this information (0).

The debugging information at level lincludes the raw data returned from the XML-RPC server it
was querying (including bot HTTP headers and the full XML payload), and the PHP value the client
attemptsto create to represent the value returned by the server. At level 2, the complete payload of the
xmirpc request is also printed, before being sent t the server.

This option can be very useful when debugging serversasit allows you to see exactly what the client
sends and the server returns.

setKey
void setKey (int $key, int $keypass)

This method sets the optiona certificate key and passphrase used in SSL-enabled communication
with aremote server (when thet r anspor t isset to 'https' in the client's construction or in the send
method).

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for thecur | _set opt function.

setProxy

void setProxy (string $proxyhost, int $proxyport, string
$proxyusernane, string $proxypassword, int $authtype)

Thismethod enablescalling serversviaan HTTP proxy. Thepr oxyuser nane, pr oxypassword
and aut ht ype parameters are optional. Aut ht ype defaults to CURLAUTH BASI C (Basic
authentication protocol); the only other valid value is the constant CURLAUTH_NTLM and has effect
only when the client usesthe HTTP 1.1 protocol.

NB: CURL versions before 7.11.10 cannot use a proxy to communicate with https servers.

setRequeStCom pression
voi d set Request Conpression (string $conpressi onnethod)

This method defines whether the xml payload forming the request body will be sent to the server
in compressed format, as per the HTTP specification. This is particularly useful for large request
parameters and over slow network connections. Allowed values for conpr essi onnet hod are:
'gzip', 'deflate’, ‘any' or null (with any meaning either gzip or deflate). Note that there is no automatic

22

Class documentation

fallback mechanism in place for errors due to servers not supporting receiving compressed request
bodies, so make sure that the particular server you are querying does accept compressed requests
before turning it on.

Thisrequiresthe "zlib" extension to be enabled in your php install.

setSSLVerifyHost
voi d set SSLVerifyHost (int $i)

This method defines whether connections made to XML-RPC backends viaHTTPS should verify the
remote host's SSL certificate'scommon name (CN). By default, only the existence of aCN is checked.
$i should be an integer value; 0 to not check the CN at all, 1 to merely check for its existence, and 2
to check that the CN on the certificate matches the hostname that is being connected to.

setSSLVerifyPeer

voi d set SSLVerifyPeer (bool $i)

This method defines whether connections made to XML-RPC backends viaHTTPS should verify the
remote host's SSL certificate, and cause the connection to fail if the cert verification fails. $i should
be a boolean value. Default value: TRUE. To specify custom SSL certificates to validate the server
with, usetheset CaCerti fi cat e method.

setSSLVersion
voi d setSSLVersion (int $i)

This method sets the SSL version to be used when making https calls. See the PHP manual for
CURLOPT_SSLVERSION for a description of the allowed values.

setUserAgent
voi d Useragent (string $useragent)

This method sets a custom user-agent that will be used by the client in the http headers sent with the
request. The default value is built using the library name and version constants.

Variables

NB: direct manipulation of these variables is only recommended for advanced users.

no_multicall

This member variable determines whether the multicall() method will try to take advantage of the
system.multicall xmlrpc method to dispatch to the server an array of requestsin asingle http roundtrip
or simply execute many consecutive http calls. Defaultsto FAL SE, but it will be enabled automatically
on the first failure of execution of system.multicall.

request_charset_encoding

Thisisthe charset encoding that will be used for serializing request sent by the client.

If defaultsto NULL, which means using US-ASCII and encoding all characters outside of the ASCI|
range using their xml character entity representation (this has the benefit that line end characters will
not be mangled in the transfer, a CR-LF will be preserved aswell asasinge LF).

Valid values are 'US-ASCII', 'UTF-8' and '1SO-8859-1'

23

Class documentation

return_type

This member variable determines whether the value returned inside an xmlrpcresp object as results
of callsto the send() and multicall() methods will be an xmlrpcval object, a plain php value or araw
xml string. Allowed values are 'xmirpcvals' (the default), ‘phpvals and 'xml'. To alow the user to
differentiate between a correct and a faulty response, fault responses will be returned as xmlrpcresp
objects in any case. Note that the 'phpvals’ setting will yield faster execution times, but some of the
information from the original responsewill belost. It will bee.g. impossibleto tell whether aparticular
php string value was sent by the server as an xmlrpc string or base64 value.

Example usage:

$client = new xm rpc_client ("phpxn rpc. sour cef orge. net/server. php");
$client->return_type = 'phpval s'

$message = new xmnl rpcnsg(" exanpl es. get St at eNane", array(new xm rpcval (23, "int")));
$resp = $client->send($nessage) ;

if ($resp->faultCode()) echo 'KO Error: '.$resp->faultString(); else echo 'OK: got

For more details about usage of the 'xml' value, see Appendix A.

xmlrpcresp

This classis used to contain responsesto XML-RPC requests. A server method handler will construct
anxml rpcresp and passit as areturn value. This same value will be returned by the result of an
invocation of the send method of thexmi r pc_cl i ent class.

Creation

xm rpcresp new xm rpcresp (xmrpcval $xmrpcval)
xm rpcresp new xmrpcresp (0, int $errcode, string $err_string)

The first syntax is used when execution has happened without difficulty: $xm rpcval is an
xm rpcval value with the result of the method execution contained in it. Alternatively it can be a
string containing the xml serialization of the single xml-rpc value result of method execution.

The second type of constructor is used in case of failure. errcode and err_stri ng are used to
provide indication of what has gone wrong. See xmirpc_server for more information on passing error
codes.

Methods
faultCode

int faultCode (void)

Returns the integer fault code return from the XML-RPC response. A zero value indicates success,
any other value indicates a failure response.

faultString

value

string faultString (void)

Returns the human readable explanation of the fault indicated by $r esp- >f aul t Code().

xm rpcval value (void)

24

" . $resp->val ue(

Class documentation

Returns an xm r pcval object containing the return value sent by the server. If the response's
f aul t Code is non-zero then the value returned by this method should not be used (it may not even
be an object).

Note: if the xmlrpcresp instance in question has been created by an xml r pc_cl i ent object whose
ret ur n_t ype wasset to 'phpvals, then aplain php valuewill bereturnedinstead of anxni r pcval
object. If ther et urn_t ype was set to 'xml', an xml string will be returned (see the return_type
member var above for more details).

serialize
string serialize (void)

Returns an XML string representation of the response (xml prologue not included).

xmlrpc_server

The implementation of this class has been kept as simple to use as possible. The constructor for the
server basically does al the work. Here's aminimal example:

function foo ($xnmrpcnsg) {

return new xm rpcresp($sone_xni rpc_val);

}

class bar {
function foobar($xnm rpcnsg) {

return new xm rpcresp($sone_xni rpc_val);
}
}

$s = new xm rpc_server (
array(
"exanpl es. nyFuncl" => array("function" => "fo0"),
"exanpl es. nyFunc2" => array("function" => "bar::foobar"),

));

This performs everything you need to do with a server. The single constructor argument is an
associative array from xmirpc method names to php function names. The incoming request is parsed
and dispatched to the relevant php function, which isresponsiblefor returningaxmni r pcr esp object,
that will be serialized back to the caller.

Method handler functions

Both php functions and class methods can be registered as xmlrpc method handlers.

The synopsis of amethod handler function is:
xm rpcresp $resp = function (xnmlrpcnsg $nmsg)

No text should be echoed 'to screen' by the handler function, or it will break the xml response
sent back to the client. This applies also to error and warning messages that PHP prints to screen
unless the appropriate parameters have been set in the php.in file. Another way to prevent echoing of
errors inside the response and facilitate debugging is to use the server SetDebug method with debug
level 3 (see ...). Exceptions thrown duting execution of handler functions are caught by default and
a XML-RPC error reponse is generated instead. This behaviour can be finetuned by usage of the
excepti on_handl i ng member variable (see ...).

Note that if you implement a method with a name prefixed by syst em the handler function will
be invoked by the server with two parameters, the first being the server itself and the second being
thexm r pcnsg object.

25

Class documentation

The same php function can be registered as handler of multiple xmlrpc methods.

Here isamore detailed example of what the handler function f oo may do:

function foo ($xmrpcnsg) {
gl obal $xm rpcerruser; // inport user errcode base val ue

$nmeth = $xm rpcnsg->net hod(); // retrieve method nane

$par = $xml rpcnsg- >get Paran(0); // retrieve value of first parameter - assunes at |east one par
$val = $par->scalarval (); // decode value of first paraneter - assunes it is a scalar val ue
if ($err) {

// this is an error condition
return new xm rpcresp(0, $xmrpcerruser+1, // user error 1
"There's a problem Captain")

} else {

/1 this is a successful value being returned

return new xm rpcresp(new xm rpcval ("All's finel", "string"))
}

}

Seeser ver. php inthisdistribution for more examples of how to do this.

Since release 2.0RC3 there is a new, even simpler way of registering php functions with the server.
See section 5.7 below

The dispatch map

Thefirst argument to the xm r pc_ser ver constructor is an array, called the dispatch map. In this
array isthe information the server needs to service the XML-RPC methods you define.

The dispatch map takes the form of an associative array of associative arrays. the outer array has one
entry for each method, the key being the method name. The corresponding valueis another associative
array, which can have the following members:

e functi on - this entry is mandatory. It must be either a name of a function in the global scope
which services the XML-RPC method, or an array containing an instance of an object and a static
method name (for static class methods the ‘class::method' syntax is also supported).

e si gnature - thisentry is an array containing the possible signatures (see Signatures) for the
method. If this entry is present then the server will check that the correct number and type of
parameters have been sent for this method before dispatching it.

» docstri ng - thisentry isastring containing documentation for the method. The documentation
may contain HTML markup.

* signature_docs - this entry can be used to provide documentation for the single
parameters. It must match in structure the 'signature member. By default, only the
docunenting_xm rpc_server classin the extras package will take advantage of this, since
the "system.methodHelp" protocol does not support documenting method parametersindividually.

» paraneters_type - this entry can be used when the server is working in 'xmlrpcvals mode
(see...) to define one or more entriesin the dispatch map as being functions that follow the 'phpvals
calling convention. The only useful valueis currently the string phpval s.

Look at theser ver . php examplein the distribution to see what a dispatch map looks like.

Method signatures

A signature is a description of a method's return type and its parameter types. A method may have
more than one signature.

26

Class documentation

Within a server's dispatch map, each method has an array of possible signatures. Each signature is an
array of types. Thefirst entry isthe return type. For instance, the method

string exanpl es. get St at eNane(i nt)
has the signature
array($xm rpcString, $xmrpclnt)

and, assuming that it is the only possible signature for the method, it might be used like thisin server
creation:

$findstate_sig = array(array($xmrpcString, $xmrpclint));

$fi ndst at e_doc = 'When passed an integer between 1 and 51 returns the
name of a US state, where the integer is the index of that state nane
in an al phabetic order.";

$s = new xm rpc_server(array(
"exanpl es. get St at eNanme" => array(
"function" => "findstate",
"signature" => $findstate_sig,
"docstring" => $findstate_doc

)));

Note that method signatures do not allow to check nested parameters, e.g. the number, names and
types of the members of a struct param cannot be validated.

If amethod that you want to expose has adefinite number of parameters, but each of those parameters
could reasonably be of multiple types, the array of acceptable signatures will easily grow into a
combinatorial explosion. To avoid such a situation, the lib defines the global var $xmi r pcVal ue,
which can be used in method signatures as a placeholder for ‘any xmlrpc type":

$echoback_sig = array(array($xnirpcVal ue, $xnirpcVal ue));
$findstate_doc = ' Echoes back to the client the received value, regardless of its type';

$s = new xm rpc_server(array(
"echoBack" => array(
"function" => "echoback",
"signature" => $echoback_sig, // this sig guarantees that the nmethod handler will be called wit
"docstring" => $echoback_doc

)));

Methodssyst em | i st Met hods,syst em nmet hodHel p,syst em net hodSi gnat ur e and
system mul tical | are aready defined by the server, and should not be reimplemented (see
Reserved Methods below).

Delaying the server response

Y ou may want to construct the server, but for some reason not fulfill the request immediately (security
verification, for instance). If you omit to pass to the constructor the dispatch map or pass it a second
argument of O this will have the desired effect. You can then use the ser vi ce() method of the
server class to service the request. For example:

$s = new xni rpc_server ($nyDi spMap, 0); // second parameter = 0 prevents automatic servicing of requ
[l ... some code that does other stuff here
$s->service();

Note that the ser vi ce method will print the complete result payload to screen and send appropriate
HTTP headers back to the client, but also return the response object. This permitsfurther manipulation
of the response, possibly in combination with output buffering.

27

Class documentation

To prevent the server from sending HT TP headers back to the client, you can pass a second parameter
with a value of TRUE to the ser vi ce method. In this case, the response payload will be returned
instead of the response object.

Xmlrpc requests retrieved by other means than HTTP POST bodies can also be processed. For

example:

$s = new xmirpc_server(); // not passing a dispatch map prevents automatic servicing of request

/Il ... some code that does other stuff here, including setting dispatch map into server object
$resp = $s->servi ce($xm rpc_request _body, true); // parse a variable instead of POST body, retrieve

/1 ... sone code that does other stuff with xml response $resp here

Modifying the server behaviour

A couple of methods / class variables are available to modify the behaviour of the server. The only
way to take advantage of their existence is by usage of a delayed server response (see above)

setDebug()

This function controls weather the server is going to echo debugging messages back to the client as
commentsin response body. Valid values: 0,1,2,3, with 1 being the default. At level 0, no debug info
isreturned to the client. At level 2, the complete client request is added to the response, as part of the
xml comments. At level 3, anew PHP error handler is set when executing user functions exposed as
server methods, and all non-fatal errors are trapped and added as comments into the response.

allow_system_funcs

Default_value: TRUE. When set to FALSE, disables support for Syst em xxx functions in
the server. It might be useful eg. if you do not wish the server to respond to requests to
System Li st Met hods.

compress_response

When set to TRUE, enables the server to take advantage of HT TP compression, otherwise disablesit.
Responses will be transparently compressed, but only when an xmlrpc-client declares its support for
compression in the HTTP headers of the request.

Note that the ZLIB php extension must be installed for thisto work. If it is, conpr ess_r esponse
will default to TRUE.

exception_handling

This variable controls the behaviour of the server when an exception is thrown by a method handler
php function. Valid values: 0,1,2, with 0 being the default. At level O, the server catches the exception
and return an 'internal error' xmlrpc response; at 1 it catches the exceptions and return an xmlrpc
response with the error code and error message corresponding to the exception that was thron; at 2 =
the exception is floated to the upper layersin the code

response_charset_encoding
Charset encoding to be used for response (only affects string values).
If it can, the server will convert the generated response from internal_encoding to the intended one.

Valid values are: a supported xml encoding (only UTF-8 and | SO-8859-1 at present, unless mbstring
is enabled), null (leave charset unspecified in response and convert output stream to US_ASCII),

28

Class documentation

‘default’ (use xmlrpc library default as specified in xmlrpc.inc, convert output stream if needed), or
‘auto’ (use client-specified charset encoding or same as request if request headers do not specify it
(unlessrequest is US-ASCII: then use library default anyway).

Fault reporting

Fault codes for your servers should start at the value indicated by the global $xm r pcer ruser + 1.

Standard errors returned by the server include:

1 Unknown method

2 Invalid return payload

3 Incorrect parameters

4 Can't introspect: method
unknown

5 Didn't receive 200 OK from

remote server

6 No datareceived from server

7 No SSL support compiled in

8 CURL error

9- 14 multicall errors

100- XML parseerrors

'New style' servers

Returned if the server was asked to dispatch a method it didn't
know about

This error is actually generated by the client, not server,
code, but signifies that a server returned something it couldn't
understand. A more detailed error report is sometimes added
onto the end of the phrase above.

Thiserror isgenerated when the server has signature(s) defined
for a method, and the parameters passed by the client do not
match any of signatures.

This error is generated by the builtin syst em * methods
when any kind of introspection is attempted on a method
undefined by the server.

This error is generated by the client when a remote server
doesn't return HTTP/1.1 200 OK in response to a request. A
more detailed error report is added onto the end of the phrase
above.

This error is generated by the client when a remote server
returns HTTP/1.1 200 OK in response to a request, but no
response body followsthe HTTP headers.

This error is generated by the client when trying to send a
request with HTTPS and the CURL extension is not available
to PHP.

This error is generated by the client when trying to send a
request with HTTPS and the HTTPS communication fails.

These errors are generated by the server when something fails
inside a system.multicall request.

Returns 100 plus the XML parser error code for the fault that
occurred. The faul t Stri ng returned explains where the
parse error was in the incoming XML stream.

In the same spirit of simplification that inspired the xm rpc_client::return_type class
variable, anew classvariablehasbeen added totheserver class: f unct i ons_par aneters_t ype.
When set to 'phpvals, the functions registered in the server dispatch map will be called with plain
php values as parameters, instead of asingle xmlrpcmsg instance parameter. The return value of those
functionsis expected to be a plain php value, too. An example is worth athousand words:

function foo($usr_id, $out lang="en') {

gl obal $xml rpcerruser;

29

Class documentation

if ($soneError Condition)
return new xm rpcresp(0, $xmrpcerruser+l, 'DOH");
el se
return array(
'nane' => 'Joe',
'age' => 27,
"picture' => new xml rpcval (file_get_contents($pi cOf TheGuy), 'base64')
)
}

$s = new xni rpc_server(
array(
"exanpl es. nyFunc" => array(

"function" => "bar::foobar",

"signature" => array(
array($xmrpcString, $xmrpclint),
array($xmrpcString, $xmrpclnt, $xmrpcString)

)

), false);
$s->f uncti ons_paraneters_type = ' phpval s';
$s- >servi ce();

There are afew things to keep in mind when using this simplified syntax:

to return an xmlrpc error, the method handler function must return an instance of x r pcr esp. The
only other way for the server to know when an error response should be served to the client isto throw
an exception and set the server'sexcept i on_handl i ng memeber var to 1,

to return a base64 value, the method handler function must encode it on its own, creating an instance
of an xmlrpcval object;

the method handler function cannot determine the name of the xmlrpc method it is serving, unlike
standard handler functions that can retrieve it from the message object;

when receiving nested parameters, the method handler function has no way to distinguish a php string
that was sent as base64 value from one that was sent as a string value;

this has a direct consequence on the support of system.multicall: a method whose signature contains
datetime or base64 values will not be available to multicall calls;

last but not least, the direct parsing of xml to php values is much faster than using xmlrpcvals, and
allows the library to handle much bigger messages without allocating all available server memory or
smashing PHP recursive call stack.

30

Chapter 8. Global variables

Many global variables are defined in the xmirpc.inc file. Some of those are meant to be used as
constants (and modifying their value might cause unpredictable behaviour), while some others can be
modified in your php scripts to alter the behaviour of the xml-rpc client and server.

"Constant" variables

$xmlirpcerruser

$xm rpcerruser = 800;
The minimum valuefor errorsreported by user implemented XM L-RPC servers. Error numbers|ower
than that are reserved for library usage.
$xmlrpcl4, $xmlirpcint, $xmlirpcBoolean,
$xmlrpcDouble, $xmlirpcString, $xmlrpcDateTime,
$xmlrpcBaseb4, $xmlirpcArray, $xmlrpcStruct,
$xmlrpcValue, $xmlirpcNull

For convenience the strings representing the XM L-RPC types have been encoded as global variables:

$xni rpcl 4="i 4";

$xm rpclnt="int";

$xml r pcBool ean="bool ean";
$xni r pcDoubl e="doubl e";
$xml rpcString="string";
$xni r pcDat eTi me="dat eTi ne. i s08601";
$xnl r pcBase64="bhase64";
$xm rpcArray="array";

$xml rpcStruct="struct";
$xml r pcVal ue="undef i ned";
$xml rpcNul [="nul I ;

$xmlrpcTypes, $xmlirpc_valid_parents, $xmlrpcerr,
$xmlrpcstr, $xmlrpcerrxml, $xmlirpc_backslash,

$ xh, $xml _is088591 Entities, $xmlEntities,
$xmlrpcs_capabilities

Reserved for internal usage.

Variables whose value can be modified

xmlrpc_defencoding
$xml rpc_def encodi ng = "UTF8";

This variable defines the character set encoding that will be used by the xml-rpc client and server
to decode the received messages, when a specific charset declaration is not found (in the messages
sent non-ascii chars are always encoded using character references, so that the produced xml isvalid
regardless of the charset encoding assumed).

31

Global variables

Allowed values: " UTF8"," | SO- 8859- 1" ," ASCI | ".

Note that the appropriate RFC actually mandates that XML received over HTTP without indication
of charset encoding be treated as US-ASCII, but many servers and clients 'in the wild' violate the
standard, and assume the default encoding is UTF-8.

xmlrpc_internalencoding

$xm rpc_i nternal encoding = "| SO 8859-1";

Thisvariable defines the character set encoding that the library usesto transparently encode into valid
XML the xml-rpc values created by the user and to re-encode the received xml-rpc values when it
passes them to the PHP application. It only affects xml-rpc values of string type. It is a separate value
from xmlrpc_defencoding, allowing e.g. to send/receive xml messages encoded on-the-wire in US-
ASCII and process them as UTF-8. It defaults to the character set used internally by PHP (unless you
are running an MBString-enabled installation), so you should change it only in special situations, if
e.g. the string values exchanged in the xml-rpc messages are directly inserted into / fetched from a
database configured to return UTF8 encoded strings to PHP. Example usage:

<?php

include(' xmrpc.inc')

$xm rpc_internal encoding = 'UTF-8'; // this has to be set after the inclusion above
$v = new xm rpcval ('1°ai#1 ¥); // This xmrpc value will be correctly serialized

xmlrpcName

$xm rpcName = "XM.- RPC for PHP";

The string representation of the name of the XML-RPC for PHP library. It is used by the client for
building the User-Agent HTTP header that is sent with every request to the server. Y ou can change
itsvalue if you need to customize the User-Agent string.

xmlrpcVersion

$xm rpcVersion = "2.2";

The string representation of the version number of the XML-RPC for PHP library in use. It isused by
the client for building the User-Agent HTTP header that is sent with every request to the server. You
can change its value if you need to customize the User-Agent string.

xmlrpc_null_extension

When set to TRUE, the lib will enable support for the <NIL/> (and <EX:NIL/>) xmlrpc value, as per
the extensionto the standard proposed here. Thismeansthat <NIL/>and <EX:NIL/> tagsreceived will
be parsed as valid xmirpc, and the corresponding xmlrpcvals will return "null” for scal ar Typ() .

xmlrpc_null_apache_encoding

When set to TRUE, php NULL values encoded into xm r pcval objects get seriaized using the
<EX: NI L/ > tag instead of <NI L/ >. Please note that both forms are always accepted as input
regardless of the value of this variable.

32

as the greek w

Chapter 9. Helper functions

XML-RPC for PHP contains some helper functions which you can use to make processing of XML-
RPC requests easier.

Date functions

The XML-RPC specification has this to say on dates:

Don't assume a timezone. It should be specified by the server in its documentation
what assumptions it makes about timezones.

Unfortunately, this means that date processing isn't straightforward. Although XML-RPC uses SO
8601 format dates, it doesn't use the timezone specifier.

We strongly recommend that in every case where you pass dates in XML-RPC calls, you use UTC
(GMT) asyour timezone. Most computer languagesinclude routinesfor handling GMT times natively,
and you won't have to trans ate between timezones.

For more information about dates, see ISO 8601: The Right Format for Dates [http://www.uic.edu/
year2000/datefmt.html], which has a handy link to a PDF of the 1SO 8601 specification. Note that
XML-RPC uses exactly one of the available representations: CCYYMMDDTHH:MM:SS.

1Is08601 _encode
string i so8601 encode (string $tine_t, int $utc = 0)

Returns an SO 8601 formatted date generated from the UNIX timestamp $t i me_t , asreturned by
the PHP functiont i me() .

The argument $ut ¢ can be omitted, in which case it defaultsto 0. If it is set to 1, then the function
correctsthetime passed in for UTC. Example: if you'rein the GMT-6:00 timezone and set $ut ¢, you
will receive a date representation six hours ahead of your local time.

Theincluded demo program var deno. php includes a demonstration of this function.

iIso8601 decode

int iso8601_decode (string $isoString, int $utc = 0)

Returns a UNIX timestamp from an |SO 8601 encoded time and date string passed in. If $ut c is1
then $i soSt ri ng isassumed to beinthe UTC timezone, and thustheresult isalso UTC: otherwise,
the timezone is assumed to be your local timezone and you receive alocal timestamp.

Easy use with nested PHP values

Dan Libby was kind enough to contribute two helper functions that make it easier to translate to and
from PHP values. This makes it easier to deal with complex structures. At the moment support is
limited to int, double, string, array, datetime and struct datatypes; note also that all PHP arrays are
encoded as structs, except arrayswhose keys areinteger numbers starting with 0 and incremented by 1.

These functionsresideinxm r pc. i nc.

php_xmlrpc_decode

m xed php_xml rpc_decode (xmrpcval $xmrpc_val, array $options)

33

http://www.uic.edu/year2000/datefmt.html
http://www.uic.edu/year2000/datefmt.html
http://www.uic.edu/year2000/datefmt.html

Helper functions

array php_xm rpc_decode (xm rpcnsg $xml rpcnsg_val, string $options)

Returns a native PHP value corresponding to the values found in the xmirpcval $xm r pc_val ,
tranglated into PHP types. Base-64 and datetime values are automatically decoded to strings.

In the second form, returns an array containing the parameters of the given xm r pcnsg_val ,
decoded to php types.

The opt i ons parameter is optional. If specified, it must consist of an array of options to be
enabled in the decoding process. At the moment the only valid option are decode php objs and
dat es_as_obj ect s. When thefirst is set, php objects that have been converted to xml-rpc structs
using the php_xm r pc_encode function and a corresponding encoding option will be converted
back into object valuesinstead of arrays (provided that the classdefinition isavail able at reconstruction
time). When the second is set, XML-RPC datetime values will be converted into native dat eTi ne
objects instead of strings.

WARNING: please take extreme care before enabling the decode _php_objs option: when php objects
are rebuilt from the received xml, their constructor function will be silently invoked. This means that
you are allowing the remote end to trigger execution of uncontrolled PHP code on your server, opening
the door to codeinjection exploits. Only enabl e this option when you have compl etetrust of the remote
server/client.

Example:

Il wrapper to expose an existing php function as xmrpc nmethod handl er
function foo_w apper ($n)

{
$parans = php_xm rpc_decode($m ;
$retval = call _user_func_array('foo', $parans);
return new xm rpcresp(new xm rpcval ($retval)); // foo return value will be serialized as string

}

$s = new xnm rpc_server (array(
"exanpl es. nyFuncl" => array(
"function" => "foo_w apper",
"signatures" => ...

)));

php_xmlrpc_encode

xm rpcval php_xm rpc_encode (m xed $phpval, array $options)

Returns an xmirpcval object populated with the PHP values in $phpval . Works recursively on
arrays and objects, encoding numerically indexed php arrays into array-type xmirpcval objects and
non numerically indexed php arrays into struct-type xmlrpcval objects. Php objects are encoded into
struct-type xmlrpcvals, excepted for php values that are already instances of the xmlrpcval class or
descendants thereof, which will not be further encoded. Note that there's no support for encoding php
values into base-64 values. Encoding of date-times is optionally carried on on php strings with the
correct format.

The opt i ons parameter is optional. If specified, it must consist of an array of options to be
enabled in the encoding process. At the moment the only valid options are encode php_objs,
nul | _ext ensi on and auto_dates.

The first will enable the creation of 'particular’ xmlrpcval objects out of php objects, that add
a "php_class' xml attribute to their serialized representation. This attribute allows the function
php_xmlrpc_decode to rebuild the native php objects (provided that the same class definition exists
on both sides of the communication). The second allows to encode php NULL values to the <NI L/

> (or <EX: NI L/ >, see...) tag. The last encodes any string that matches the |SO8601 format into an
XML-RPC datetime.

Example:

Helper functions

/] the easy way to build a conplex xm -rpc struct, show ng nested base64 val ue and datetinme val ues
$val = php_xnl rpc_encode(array(

"first struct_elenent: an int' => 666,

'second: an array' => array ('apple', 'orange', 'banana'),

"third: a base64 elenent' => new xmrpcval (' hello world', 'base64'),

"fourth: a datetinme' =>'20060107T01: 53: 00'

), array('auto_dates'));

php_xmlirpc_decode xml

xm rpcval | xmrpcresp | xmrpcnsg php_xmrpc_decode_xm (string
$xm, array $options)

Decodes the xml representation of either an xmlrpc request, response or single value, returning the
corresponding php-xmlrpc object, or FALSE in case of an error.

Theopt i ons parameter is optional. If specified, it must consist of an array of optionsto be enabled
in the decoding process. At the moment, no option is supported.

Example:

$text = '<val ue><array><dat a><val ue>Hel | o wor| d</ val ue></ dat a></ arr ay></ val ue>' ;
$val = php_xnlrpc_decode_xnl ($t ext);
if ($val) echo 'Found a value of type '.$val->kindOf(); else echo 'Found invalid xm"';

Automatic conversion of php functions into
xmlrpc methods (and vice versa)

For the extremely lazy coder, helper functions have been added that allow to convert a php function
into an xmlrpc method, and a remotely exposed xmirpc method into alocal php function - or a set of
methods into a php class. Note that these comes with many caveat.

wrap_xmlrpc_method

string wap_xmrpc_nmethod ($client, $nethodnane, $extra options)

string wap_xmrpc_nethod ($client, $nethodnane, $signum $ti nmeout,
$protocol, $funcnane)

Given an xmlrpc server and a method name, creates a php wrapper function that will call the remote
method and return results using native php types for both params and results. The generated php
function will return an xmlirpcresp object for failed xmirpc calls.

The second syntax is deprecated, and is listed here only for backward compatibility.

The server must support the syst em et hodSi gnat ur e xmlrpc method call for this function to
work.

Thecl i ent param must be avalid xmlrpc_client object, previously created with the address of the
target xmlrpc server, and to which the preferred communication options have been set.

The optional parameters can be passed as array key,value pairsintheext r a_opt i ons param.

Thesi gnumoptional param has the purpose of indicating which method signatureto useg, if the given
server method has multiple signatures (defaults to 0).

Thet i meout andpr ot ocol optional paramsarethesameasinthexm rpc_client:: send()
method.

35

Helper functions

If set, the optional new_f unct i on_nane parameter indicates which name should be used for the
generated function. In caseit is not set the function name will be auto-generated.

If ther et ur n_sour ce optional parameter is set, the function will return the php source code to
build the wrapper function, instead of evaluating it (useful to save the code and use it later as stand-
alone xmlrpc client).

If the encode_php_obj s optiona parameter is set, instances of php objects later passed as
parameters to the newly created function will receive a 'special’ treatment that allows the server to
rebuild them as php objectsinstead of simple arrays. Notethat thisentailsusing a"slightly augmented”
version of thexmlrpc protocoal (ie. using element attributes), which might not be understood by xmirpc
servers implemented using other libraries.

If the decode_php_obj s optional parameter is set, instances of php objects that have been
appropriately encoded by the server using a coordinate option will be deserialized as php objects
instead of simple arrays (the same class definition should be present server side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their constructor
method has to be invoked, and this means that the remote server can trigger execution of unforeseen
php code on the client: not really a code injection, but aimost. Please enable this option only when
you trust the remote server.

In case of an error during generation of the wrapper function, FALSE is returned, otherwise the name
(or source code) of the new function.

Known limitations; server must support syst em net hodsi gnat ur e for the wanted xmirpc
method; for methods that expose multiple signatures, only one can be picked; for remote calls with
nested xmlrpc params, the caller of the generated php function has to encode on its own the params
passed to the php function if these are structs or arrays whose (sub)members include values of type
base64.

Note: calling the generated php function 'might' be slow: a new xmlrpc client is created on every
invocation and an xmlrpc-connection opened+closed. An extra ‘debug’ param is appended to the
parameter list of the generated php function, useful for debugging purposes.

Example usage:

$c = new xm rpc_client (' http://phpxm rpc. sourceforge. net/server. php');
$function = wap_xnml rpc_net hod($client, 'exanples.getStateNane');

if (!$function)
di e(' Cannot introspect renote nethod');
el se {
$st at eno = 15;
$st at ename = $f unction($a);
if (is_a($statenanme, 'xmrpcresp')) // call failed

{
echo 'Call failed: '.$statenane->faultCode().'. Calling again w th debug on';
$function($a, true);

}

el se

echo "OK, state nr. $stateno is $stat enane";

}

wrap_php_function

array wrap_php_function (string $f uncnane, string
$wr apper _function_nanme, array $extra_options)

Given a user-defined PHP function, create a PHP ‘wrapper' function that can be exposed as xmlrpc
method from an xmlrpc_server object and called from remote clients, and return the appropriate
definition to be added to a server's dispatch map.

36

Helper functions

The optional $wr apper _f unct i on_nane specifies the name that will be used for the auto-
generated function.

Since php is atypeless language, to infer types of input and output parameters, it relies on parsing the
javadoc-style comment block associated with the given function. Usage of xmlrpc native types (such
as datetime.dateTime.iso8601 and base64) in the docblock @param tag is also allowed, if you need
the php function to receive/send datain that particular format (note that base64 encoding/decoding is
transparently carried out by the lib, while datetime vals are passed around as strings).

Known limitations; only works for user-defined functions, not for PHP internal functions (reflection
does not support retrieving number/type of params for those); the wrapped php function will not be
able to programmatically return an xmlrpc error response.

If ther et urn_sour ce optional parameter is set, the function will return the php source code to
build the wrapper function, instead of evaluating it (useful to save the code and use it later in a stand-
alone xmirpc server). It will bein the stored in the sour ce member of the returned array.

If the suppress_war ni ngs optional parameter is set, any runtime warning generated while
processing the user-defined php function will be catched and not be printed in the generated xml
response.

If theext r a_opt i ons array containstheencode_php_obj s value, wrapped functionsreturning
php objects will generate "special” xmlrpc responses; when the xmlrpc decoding of those responses
is carried out by this same lib, using the appropriate param in php_xmirpc_decode(), the objects will
be rebuilt.

In short: php objects can be serialized, too (except for their resource members), using this function.
Other libsmight choke on the very samexml that will be generated in thiscase (i.e. it hasanonstandard
attribute on struct element tags)

If the decode_php_obj s optional parameter is set, instances of php objects that have been
appropriately encoded by the client using a coordinate option will be deserialized and passed to the
user function as php objectsinstead of simple arrays (the same class definition should be present server
side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their constructor
method has to be invoked, and this means that the remote client can trigger execution of unforeseen
php code on the server: not really a code injection, but almost. Please enable this option only when
you trust the remote clients.

Example usage:

/**

* State nane from state nunber decoder. NB: do NOT renove this coment bl ock.
* @araminteger $stateno the state nunber

* @eturn string the nane of the state (or error description)

*/

function findstate($stateno)

gl obal $st at eNanes;
if (isset($stateNanes[$stateno-1]))
{ return $stat eNanmes[$st at eno- 1] ;
}
el se
{
return "I don't have a state for the index '" . $stateno . "'"
}
}

/'l wrap php function, build xmrpc server

$net hods = array();

$findstate_sig = wap_php_function('findstate');
if ($findstate_sig)

37

Helper functions

$net hods[' exanpl es. get St at eNane'] = $fi ndstate_sig;
$srv = new xnl rpc_server ($net hods) ;

Functions removed from the library

Thefollowing two functions have been deprecated in version 1.1 of thelibrary, and removed in version
2, in order to avoid conflicts with the EPl xml-rpc library, which also defines two functions with the
same names.

To ease the transition to the new naming scheme and avoid breaking existing implementations, the
following scheme has been adopted:

e |f EPI-XMLRPC is not active in the current PHP instalation, the constant
XMLRPC EPI ENABLEDwill besetto' O

» If EPI-XMLRPC is active in the current PHP installation, the constant XM_LRPC_EPI _ ENABLED
will besetto" 1'

The following documentation is kept for historical reference:

xmlrpc_decode
m xed xml rpc_decode (xml rpcval $xmrpc_val)

Alias for php_xmirpc_decode.

xmlrpc_encode

xm rpcval xmrpc_encode (mxed $phpval)

Aliasfor php_xmlrpc_encode.
Debugging aids

xmlrpc_debugmsg
voi d xm rpc_debugnsg (string $debugstring)

Sends the contents of $debugst ri ng in XML comments in the server return payload. If a PHP
client has debugging turned on, the user will be able to see server debug information.

Use this function in your methods so you can pass back diagnostic information. It is only available
fromxm r pcs. i nc.

38

Chapter 10. Reserved methods

In order to extend the functionality offered by XML-RPC servers without impacting on the protocoal,
reserved methods are supported in thisrelease.

All methods starting with syst em are considered reserved by the server. PHP for XML-RPC itself
provides four specia methods, detailed in this chapter.

Note that al server objects will automatically respond to clients querying these methods, unless the

property allow_system_funcs has been set to f al se before calling the ser vi ce() method. This
might pose a security risk if the server is exposed to public access, e.g. on the internet.

system.getCapabilities

system.listMethods

This method may be used to enumerate the methods implemented by the XML-RPC server.

Thesyst em | i st Met hods method requires no parameters. It returns an array of strings, each of
which is the name of a method implemented by the server.

system.methodSignature

This method takes one parameter, the name of a method implemented by the XM L-RPC server.

It returns an array of possible signatures for this method. A signatureis an array of types. The first of
these types is the return type of the method, the rest are parameters.

Multiple signatures (i.e. overloading) are permitted: this is the reason that an array of signatures are
returned by this method.

Signatures themselves are restricted to the top level parameters expected by a method. For instance
if amethod expects one array of structs as a parameter, and it returns a string, its signature is simply
"string, array". If it expects three integers, its signatureis "string, int, int, int".

For parameters that can be of more than one type, the "undefined" string is supported.

If no signature is defined for the method, a not-array value is returned. Therefore this is the
way to test for a non-signature, if $resp below is the response object from a method call to
syst em net hodSi gnat ur e:

$v = $resp->val ue();
if ($v->kindO () !'= "array") {
/'l then the nmethod did not have a signature defined

}

Seethei ntr ospect . php demo included in this distribution for an example of using this method.

system.methodHelp

This method takes one parameter, the name of a method implemented by the XML-RPC server.

It returns a documentation string describing the use of that method. If no such string is available, an
empty string is returned.

39

Reserved methods

The documentation string may contain HTML markup.

system.multicall

This method takes one parameter, an array of 'request' struct types. Each request struct must contain
amet hodNanme member of type string and apar ans member of type array, and corresponds to the
invocation of the corresponding method.

It returns aresponse of type array, with each value of the array being either an error struct (containing
the faultCode and faultString members) or the successful response value of the corresponding single
method call.

40

Chapter 11. Examples

The best examples are to be found in the samplefilesincluded with the distribution. Some areincluded
here.

XML-RPC client: state name query

Code to get the corresponding state name from a number (1-50) from the demo server available on
SourceForge

$m = new xni rpcneg("' exanpl es. get St at eNane' ,
array(new xnl rpcval ($HTTP_POST_VARS["st at eno"], "int")));
$c = new xmi rpc_client("/server.php", "phpxmrpc.sourceforge.net", 80);
$r = $c->send($Mm;
if (!$r->faultCode()) {
$v = $r->val ue();

print "State nunber " . htmentities($HTTP_POST_VARS["stateno"]) . " is "
htm entities($v->scalarval ()) . "
";

print "<HR>I got this val ue back
<PRE>" .
htmentities($r->serialize()) . "</PRE><HR>\n";

} else {
print "Fault
";
print "Code: " . htmentities($r->faultCode()) . "
" .
"Reason: '" . htmentities($r->faultString()) . "'
";

}

Executing a multicall call

To be documented...

41

Chapter 12. Frequently Asked
Questions

How to send custom XML as payload of a
method call

Unfortunately, at the time the XM L-RPC spec was designed, support for namespacesin XML was not
as ubiquitous asit is now. As a consequence, no support was provided in the protocol for embedding

XML elements from other namespaces into an xmlrpc request.

To send an XML "chunk™ as payload of a method call or response, two options are available: either
send the complete XML block asastring xmlrpc value, or as a base64 value. Since the'<' character in
string valuesis encoded as '&It;" in the xml payload of the method call, the XML string will not break
the surrounding xmlirpc, unless characters outside of the assumed character set are used. The second
method has the added benefits of working independently of the charset encoding used for the xml to
be transmitted, and preserving exactly whitespace, whilst incurring in some extramessage length and

cpu load (for carrying out the base64 encoding/decoding).

Is there any limitation on the size of
the requests / responses that can be
successfully sent?

Yes. But | have no hard figure to give; it most likely will depend on the version of PHP in usage and

its configuration.

Keep in mind that this library is not optimized for speed nor for memory usage. Better aternatives
exist when there are strict requirements on throughput or resource usage, such asthe php native xmirpc

extension (see the PHP manual for more information).

Keep in mind also that HTTP is probably not the best choice in such asituation, and XML isadeadly

enemy. CSV formatted data over socket would be much more efficient.

If you redly need to move a massive amount of data around, and you are crazy
enough to do it using phpxmirpc, your best bet is to bypass usage of the xmlrpcval
objects, at least in the decoding phase, and have the server (or client) object return
to the caling function directly php values (see xmirpc_client::return_type and

xm rpc_server::functions_paranet ers_type for moredetails).

My server (client) returns an error whenever

the client (server) returns accented
characters

To be documented...

How to enable long-lasting method calls

To be documented...

42

Frequently Asked Questions

My client returns "XML-RPC Fault #2: Invalid
return payload: enable debugging to examine
Incoming payload": what should | do?

The response you are seeing is a default error response that the client object returns to the php
application when the server did not respond to the call with avalid xmlrpc response.

The most likely cause is that you are not using the correct URL when creating the client object, or
you do not have appropriate access rights to the web page you are requesting, or some other common
http misconfiguration.

To find out what the server is really returning to your client, you have to enable the debug mode of
the client, using $client->setdebug(1);

How can | save to a file the xml of the xmlrpc
responses received from servers?

If what you need isto save the responses received from the server as xml, you have two options:

1- use the serialize() method on the response object.

$resp = $client->send($nsQ);
if (!$resp->faultCode())
$data_t o_be_saved = $resp->serialize();

Notethat thiswill not be 100% accurate, sincethexml generated by the response object can be different
from the xml received, especialy if there is some character set conversion involved, or such (eg. if
you receive an empty string tag as <string/>, serialize() will output <string></string>), or if the server
sent back as response something invalid (in which case the xml generated client side using serialize()
will correspond to the error response generated internally by the lib).

2 - set the client object to return the raw xml received instead of the decoded objects:

$client = new xm rpc_client($url);
$client->return_type = 'xml';
$resp = $client->send($nsg);
if (!$resp->faultCode())
$data_t o_be_saved = $resp->val ue();

Note that using this method the xml response response will not be parsed at all by thelibrary, only the
http communication protocol will be checked. This means that xmlrpc responses sent by the server
that would have generated an error response on the client (eg. malformed xml, responses that have
faultcode set, etc...) now will not be flagged as invalid, and you might end up saving not valid xml
but random junk...

Can | use the ms windows character set?

If the data your application is using comes from a Microsoft application, there are some chances that
the character set used to encode it is CP1252 (the same might apply to data received from an external
xmirpc server/client, but it isquiterareto find xmlrpc toolkitsthat encodeto CP1252 instead of UTF8).
It isacharacter set which is"amost" compatible with SO 8859-1, but for afew extra characters.

PHP-XMLRPC only supportsthe 1SO 8859-1 and UTFS8 character sets. The net result of this situation
is that those extra characters will not be properly encoded, and will be received at the other end of

43

Frequently Asked Questions

the XML-RPC transmission as "garbled data". Unfortunately the library cannot provide real support
for CP1252 because of limitationsin the PHP 4 xml parser. Luckily, we tried our best to support this
character set anyway, and, since version 2.2.1, there is some form of support, left commented in the
code.

To properly encode outgoing data that is natively in CP1252, you will have to uncomment
al relative code in the file xm rpc.inc (you can search for the string "1252"), then set
$GLOBALS[' xm rpc_i nt ernal encodi ng'] =' CP1252' ; Pleasenotethat all incoming data
will then be fed to your application as UTF-8 to avoid any potential dataloss.

Does the library support using cookies / http
sessions?

In short: yes, but alittle coding is needed to make it happen.

The code below uses sessions to e.g. let the client store avalue on the server and retrieve it later.

$resp = $client->send(new xnl rpcnsg(' regi stervalue', array(new xmlrpcval (' foo'), new xn rpcval (' bar
if (!%resp->faultCode())

$cooki es = $resp->cooki es();
if (array_key_exists('PHPSESSI D', $cookies)) // nb: make sure to use the correct session cookie n

{
$session_id = $cooki es[' PHPSESSI D][' val ue'];

/! do sonme other stuff here...

$cl i ent - >set cooki e(' PHPSESSI D', $session_id);
$val = $client->send(new xnl rpcnsg(' getval ue', array(new xm rpcval ('foo')));
}
}

Server-side sessions are handled normally likein any other php application. Please see the php manual
for more information about sessions.

NB: unlike web browsers, not all xmlrpc clients support usage of http cookies. If you have troubles
with sessions and control only the server side of the communication, please check with the makers
of the xmlrpc client in use.

Appendix A. Integration with the PHP
xmlrpc extension

To be documented more...

In short: for the fastest execution possible, you can enable the php native xmlrpc extension, and use it
in conjunction with phpxmlirpc. The following code snippet gives an example of such integration

[*** client side ***/
$c = new xm rpc_client (' http://phpxm rpc. sourceforge. net/server. php');

/Il tell the client to return raw xm as response val ue
$c->return_type = 'xm "' ;

/'l let the native xmrpc extension take care of encoding request paraneters
$r = $c->send(xnl rpc_encode_request (' exanpl es. get St at eNane', $_POST['stateno']));

if ($r->faul t Code())
[/l HTTP transport error
echo 'Got error '.$r->fault Code();
el se
{
/1 HTTP request OK, but XM. returned from server not parsed yet
$v = xnl rpc_decode($r->val ue());
/'l check if we got a valid xmrpc response from server

if ($v === NULL)
echo 'CGot invalid response';
el se

/'l check if server sent a fault response
if (xmrpc_is fault($v))

echo 'Got xmirpc fault '.$v['faultCode'];
el se

echo' Got response: '.htmentities($v);

45

Appendix B. Substitution of the PHP
xmlrpc extension

Y et another interesting situation is when you are using a ready-made php application, that provides
support for the XMLRPC protocol via the native php xmirpc extension, but the extension is not
available on your php install (e.g. because of shared hosting constraints).

Since version 2.1, the PHP-XMLRPC library provides a compatibility layer that aims to be 100%
compliant with the xmlrpc extension API. This means that any code written to run on the extension
should obtain the exact same results, albeit using more resources and alonger processing time, using
the PHP-XMLRPC library and the extension compatibility module. Themoduleispart of theEXTRAS
package, available as a separate download from the sourceforge.net website, since version 0.2

46

Appendix C. 'Enough of xmlrpcvals!":
new style library usage

To be documented...

In the meantime, see docs about xmlrpc_client::return_type and
xmirpc_server::functions parameters types, aswell asphp_xmlrpc_encode, php_xmlirpc_decodeand
php_xmlrpc_decode xml

47

Appendix D. Usage of the debugger

A webservice debugger isincluded in the library to help during development and testing.

Theinterface should be self-explicative enough to need little documentation.

N OMLRPC Dehugpes - Mezilla Fhefon
Be [l Wew Hgey Booiesks ook B

. - W "T' | i Reoalheat fowirps oo ol Feugger |

KMLRPC &) O 180MRPC Debugger (based on the PHE-¥M1L BPC libramy)

Targil servar Bddrmen: |y gt Fort Path: byl o bl i ca
Actson Lint wrvsinbls mathoeds (2 Cmeoian mathod Exmouin mathos Ganarsbs wivh for mathad cail [
rmthand Hame P bl m
Clant options Show debug infol | gy Tt Frototll HTTR 1D
AITH s e S Tape
R Weel'y Hiodd's CN Wil St G Tt il
P BarEr Py s Froaiw paed
COMPRESS10N GEL T Y AESPINEE | pean w
CAOCHIES Fommet) "oppkis e vabied, Cookisd myplind’

List of avallable methods on server hitp: £ focalhost/ smirpe_ovs S smirmpcSserver.php ..
EMLRRC call{s) OFK (1,55 secs,)

1L MaryIT:17:31:52

aranplay. prticetaless Dl sl i |
o ikl 1 i . pareErrige [Dlmmcrioe]
axesplay. wddru Dasciioa |
Sk L ded O ol 1 [[ie i]
azanp lay. socirgesta Dl i |
[uwes B S bk

The most useful feature of the debugger is without doubt the "Show debug info" option. It allows to
have a screen dump of the complete http communication between client and server, including the http
headersaswell asthe request and response payloads, and isinval uable when troubleshooting problems
with charset encoding, authentication or http compression.

The debugger can take advantage of the JSONRPC library extension, to allow debugging of
JSON-RPC webservices, and of the IS XMLRPC library visua editor to allow easy mouse-driven
construction of the payload for remote methods. Both components have to be downloaded separately
from the sourceforge.net web pages and copied to the debugger directory to enable the extra
functionality:

* toenablejsonrpc functionality, download the PHP-XMLRPC EXTRAS package, and copy thefile
j sonr pc. i nc either to the same directory asthe debugger or somewherein your php include path

* to enable the visual value editing dialog, download the JIS-XMLRPC library, and copy somewhere
inthewebroot filesvi sual edi t or. php,vi sual edi t or. css andthefoldersyui andi ng.
Then edit the debugger filecont r ol | er . php and set appropriately thevariable$edi t or pat h.

48

	XML-RPC for PHP
	Table of Contents
	Chapter 1. Introduction
	Acknowledgements

	Chapter 2. What's new
	3.1.0
	3.0.1
	3.0.0
	3.0.0 beta
	2.2.2
	2.2.1
	2.2
	2.1
	2.0 final
	2.0 Release candidate 3
	2.0 Release candidate 2
	2.0 Release candidate 1

	Chapter 3. System Requirements
	Chapter 4. Files in the distribution
	Chapter 5. Known bugs and limitations
	Chapter 6. Support
	Online Support
	The Jellyfish Book

	Chapter 7. Class documentation
	xmlrpcval
	Notes on types
	int
	base64
	boolean
	string
	null

	Creation
	Methods
	addScalar
	addArray
	addStruct
	kindOf
	serialize
	scalarVal
	scalarTyp
	arrayMem
	arraySize
	structMem
	structEach
	structReset
	structMemExists

	xmlrpcmsg
	Creation
	Methods
	addParam
	getNumParams
	getParam
	method
	parseResponse
	parseResponseFile
	serialize

	xmlrpc_client
	Creation
	Methods
	send
	multiCall
	setAcceptedCompression
	setCaCertificate
	setCertificate
	setCookie
	setCredentials
	setCurlOptions
	setDebug
	setKey
	setProxy
	setRequestCompression
	setSSLVerifyHost
	setSSLVerifyPeer
	setSSLVersion
	setUserAgent

	Variables
	no_multicall
	request_charset_encoding
	return_type

	xmlrpcresp
	Creation
	Methods
	faultCode
	faultString
	value
	serialize

	xmlrpc_server
	Method handler functions
	The dispatch map
	Method signatures
	Delaying the server response
	Modifying the server behaviour
	setDebug()
	allow_system_funcs
	compress_response
	exception_handling
	response_charset_encoding

	Fault reporting
	'New style' servers

	Chapter 8. Global variables
	"Constant" variables
	$xmlrpcerruser
	$xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean, $xmlrpcDouble, $xmlrpcString, $xmlrpcDateTime, $xmlrpcBase64, $xmlrpcArray, $xmlrpcStruct, $xmlrpcValue, $xmlrpcNull
	$xmlrpcTypes, $xmlrpc_valid_parents, $xmlrpcerr, $xmlrpcstr, $xmlrpcerrxml, $xmlrpc_backslash, $_xh, $xml_iso88591_Entities, $xmlEntities, $xmlrpcs_capabilities

	Variables whose value can be modified
	xmlrpc_defencoding
	xmlrpc_internalencoding
	xmlrpcName
	xmlrpcVersion
	xmlrpc_null_extension
	xmlrpc_null_apache_encoding

	Chapter 9. Helper functions
	Date functions
	iso8601_encode
	iso8601_decode

	Easy use with nested PHP values
	php_xmlrpc_decode
	php_xmlrpc_encode
	php_xmlrpc_decode_xml

	Automatic conversion of php functions into xmlrpc methods (and vice versa)
	wrap_xmlrpc_method
	wrap_php_function

	Functions removed from the library
	xmlrpc_decode
	xmlrpc_encode

	Debugging aids
	xmlrpc_debugmsg

	Chapter 10. Reserved methods
	system.getCapabilities
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.multicall

	Chapter 11. Examples
	XML-RPC client: state name query
	Executing a multicall call

	Chapter 12. Frequently Asked Questions
	How to send custom XML as payload of a method call
	Is there any limitation on the size of the requests / responses that can be successfully sent?
	My server (client) returns an error whenever the client (server) returns accented characters
	How to enable long-lasting method calls
	My client returns "XML-RPC Fault #2: Invalid return payload: enable debugging to examine incoming payload": what should I do?
	How can I save to a file the xml of the xmlrpc responses received from servers?
	Can I use the ms windows character set?
	Does the library support using cookies / http sessions?

	Appendix A. Integration with the PHP xmlrpc extension
	Appendix B. Substitution of the PHP xmlrpc extension
	Appendix C. 'Enough of xmlrpcvals!': new style library usage
	Appendix D. Usage of the debugger

