
XML-RPC for PHP

version 3.1.0

Edd Dumbill
Gaetano Giunta

Miles Lott
Justin R. Miller

Andres Salomon

XML-RPC for PHP: version 3.1.0
by Edd Dumbill, Gaetano Giunta, Miles Lott, Justin R. Miller, and Andres Salomon
Copyright © 1999,2000,2001 Edd Dumbill, Useful Information Company

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

• Neither the name of the "XML-RPC for PHP" nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iii

Table of Contents
1. Introduction .. 1

Acknowledgements ... 1
2. What's new .. 3

3.1.0 ... 3
3.0.1 ... 3
3.0.0 ... 3
3.0.0 beta .. 3
2.2.2 ... 4
2.2.1 ... 4
2.2 .. 5
2.1 .. 5
2.0 final .. 6
2.0 Release candidate 3 .. 6
2.0 Release candidate 2 .. 6
2.0 Release candidate 1 .. 7

3. System Requirements ... 9
4. Files in the distribution ... 10
5. Known bugs and limitations .. 12
6. Support .. 13

Online Support ... 13
The Jellyfish Book .. 13

7. Class documentation .. 14
xmlrpcval ... 14

Notes on types .. 14
Creation ... 14
Methods .. 15

xmlrpcmsg ... 17
Creation ... 17
Methods .. 18

xmlrpc_client .. 19
Creation ... 19
Methods .. 19
Variables ... 23

xmlrpcresp ... 24
Creation ... 24
Methods .. 24

xmlrpc_server ... 25
Method handler functions ... 25
The dispatch map .. 26
Method signatures ... 26
Delaying the server response ... 27
Modifying the server behaviour ... 28
Fault reporting .. 29
'New style' servers ... 29

8. Global variables .. 31
"Constant" variables ... 31

$xmlrpcerruser .. 31
$xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean, $xmlrpcDouble, $xmlrpcString,
$xmlrpcDateTime, $xmlrpcBase64, $xmlrpcArray, $xmlrpcStruct, $xmlrpcValue,
$xmlrpcNull ... 31
$xmlrpcTypes, $xmlrpc_valid_parents, $xmlrpcerr, $xmlrpcstr, $xmlrpcerrxml,
$xmlrpc_backslash, $_xh, $xml_iso88591_Entities, $xmlEntities,
$xmlrpcs_capabilities ... 31

Variables whose value can be modified ... 31
xmlrpc_defencoding ... 31

XML-RPC for PHP

iv

xmlrpc_internalencoding ... 32
xmlrpcName ... 32
xmlrpcVersion .. 32
xmlrpc_null_extension .. 32
xmlrpc_null_apache_encoding ... 32

9. Helper functions .. 33
Date functions .. 33

iso8601_encode ... 33
iso8601_decode ... 33

Easy use with nested PHP values ... 33
php_xmlrpc_decode ... 33
php_xmlrpc_encode ... 34
php_xmlrpc_decode_xml .. 35

Automatic conversion of php functions into xmlrpc methods (and vice versa) 35
wrap_xmlrpc_method ... 35
wrap_php_function .. 36

Functions removed from the library .. 38
xmlrpc_decode .. 38
xmlrpc_encode .. 38

Debugging aids ... 38
xmlrpc_debugmsg ... 38

10. Reserved methods .. 39
system.getCapabilities .. 39
system.listMethods .. 39
system.methodSignature ... 39
system.methodHelp .. 39
system.multicall .. 40

11. Examples .. 41
XML-RPC client: state name query .. 41
Executing a multicall call ... 41

12. Frequently Asked Questions ... 42
How to send custom XML as payload of a method call .. 42
Is there any limitation on the size of the requests / responses that can be successfully
sent? ... 42
My server (client) returns an error whenever the client (server) returns accented
characters ... 42
How to enable long-lasting method calls ... 42
My client returns "XML-RPC Fault #2: Invalid return payload: enable debugging to
examine incoming payload": what should I do? .. 43
How can I save to a file the xml of the xmlrpc responses received from servers? 43
Can I use the ms windows character set? ... 43
Does the library support using cookies / http sessions? ... 44

A. Integration with the PHP xmlrpc extension .. 45
B. Substitution of the PHP xmlrpc extension .. 46
C. 'Enough of xmlrpcvals!': new style library usage ... 47
D. Usage of the debugger ... 48

1

Chapter 1. Introduction
XML-RPC is a format devised by Userland Software [http://www.userland.com/] for achieving
remote procedure call via XML using HTTP as the transport. XML-RPC has its own web site,
www.xmlrpc.com [http://www.xmlrpc.com/]

This collection of PHP classes provides a framework for writing XML-RPC clients and servers in PHP.

Main goals of the project are ease of use, flexibility and completeness.

The original author is Edd Dumbill of Useful Information Company [http://usefulinc.com/]. As of the
1.0 stable release, the project was opened to wider involvement and moved to SourceForge [http://
phpxmlrpc.sourceforge.net/]; later, to Github [https://github.com/]

A list of XML-RPC implementations for other languages such as Perl and Python can be found on the
www.xmlrpc.com [http://www.xmlrpc.com/] site.

Acknowledgements
Daniel E. Baumann

James Bercegay

Leon Blackwell

Stephane Bortzmeyer

Daniel Convissor

Geoffrey T. Dairiki

Stefan Esser

James Flemer

Ernst de Haan

Tom Knight

Axel Kollmorgen

Peter Kocks

Daniel Krippner

S. Kuip

A. Lambert

Frederic Lecointre

Dan Libby

Arnaud Limbourg

Ernest MacDougal Campbell III

Lukasz Mach

Kjartan Mannes

http://www.userland.com/
http://www.userland.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://usefulinc.com/
http://usefulinc.com/
http://phpxmlrpc.sourceforge.net/
http://phpxmlrpc.sourceforge.net/
http://phpxmlrpc.sourceforge.net/
https://github.com/
https://github.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/

Introduction

2

Ben Margolin

Nicolay Mausz

Justin Miller

Jan Pfeifer

Giancarlo Pinerolo

Peter Russel

Jean-Jacques Sarton

Viliam Simko

Idan Sofer

Douglas Squirrel

Heiko Stübner

Anatoly Techtonik

Tommaso Trani

Eric van der Vlist

Christian Wenz

Jim Winstead

Przemyslaw Wroblewski

Bruno Zanetti Melotti

3

Chapter 2. What's new
Note: not all items the following list have (yet) been fully documented, and some might not be present
in any other chapter in the manual. To find a more detailed description of new functions and methods
please take a look at the source code of the library, which is quite thoroughly commented in javadoc-
like form.

3.1.0
• This release makes the library compatible with php 7 by removing the deprecation warnings

• addition of a 'setSSLVersion' method to the client class

3.0.1
• fixed: the library does not decode correctly LATIN-1 requests/responses if the character set is not

set in the xml prolog

• fixed: the debugger sends incorrect requests when the payload includes LATIN-1 characters

• fixed: the client can not call remote methods which use LATIN-1 or UTF8 characters in their names

3.0.0
Note: this is the last release of the library that will support PHP 5.1 and up. Future releases will target
php 5.3 as minimum supported version.

• when using curl and keepalive, reset curl handle if we did not get back an http 200 response (eg
a 302)

• omit port on http 'Host' header if it is 80

• test suite allows interrogating https servers ignoring their certs

• method setAcceptedCompression was failing to disable reception of compressed responses if the
client supported them

3.0.0 beta
This is the first release of the library to only support PHP 5. Some legacy code has been removed, and
support for features such as exceptions and dateTime objects introduced.

The "beta" tag is meant to indicate the fact that the refactoring has been more widespread than in
precedent releases and that more changes are likely to be introduced with time - the library is still
considered to be production quality.

• improved: removed all usage of php functions deprecated in php 5.3, usage of assign-by-ref when
creating new objects etc...

• improved: add support for the <ex:nil/> tag used by the apache library, both in input and output

• improved: add support for dateTime objects in both in php_xmlrpc_encode and as parameter
for constructor of xmlrpcval

• improved: add support for timestamps as parameter for constructor of xmlrpcval

What's new

4

• improved: add option 'dates_as_objects' to php_xmlrpc_decode to return dateTime objects
for xmlrpc datetimes

• improved: add new method SetCurlOptions to xmrlpc_client to allow extra flexibility in
tweaking http config, such as explicitly binding to an ip address

• improved: add new method SetUserAgent to xmrlpc_client to to allow having different
user-agent http headers

• improved: add a new member variable in server class to allow fine-tuning of the encoding of returned
values when the server is in 'phpvals' mode

• improved: allow servers in 'xmlrpcvals' mode to also register plain php functions by defining them
in the dispatch map with an added option

• improved: catch exceptions thrown during execution of php functions exposed as methods by the
server

• fixed: bad encoding if same object is encoded twice using php_xmlrpc_encode

2.2.2
Note: this might the last release of the library that will support PHP 4. Future releases (if any) should
target php 5.0 as minimum supported version.

• fixed: encoding of utf-8 characters outside of the BMP plane

• fixed: character set declarations surrounded by double quotes were not recognized in http headers

• fixed: be more tolerant in detection of charset in http headers

• fixed: fix detection of zlib.output_compression

• fixed: use feof() to test if socket connections are to be closed instead of the number of bytes read
(rare bug when communicating with some servers)

• fixed: format floating point values using the correct decimal separator even when php locale is set
to one that uses comma

• fixed: improve robustness of the debugger when parsing weird results from non-compliant servers

• php warning when receiving 'false' in a bool value

• improved: allow the add_to_map server method to add docs for single params too

• improved: added the possibility to wrap for exposure as xmlrpc methods plain php class methods,
object methods and even whole classes

2.2.1
• fixed: work aroung bug in php 5.2.2 which broke support of HTTP_RAW_POST_DATA

• fixed: is_dir parameter of setCaCertificate() method is reversed

• fixed: a php warning in xmlrpc_client creator method

• fixed: parsing of '1e+1' as valid float

• fixed: allow errorlevel 3 to work when prev. error handler was a static method

• fixed: usage of client::setcookie() for multiple cookies in non-ssl mode

What's new

5

• improved: support for CP1252 charset is not part or the library but almost possible

• improved: more info when curl is enabled and debug mode is on

2.2
• fixed: debugger errors on php installs with magic_quotes_gpc on

• fixed: support for https connections via proxy

• fixed: wrap_xmlrpc_method() generated code failed to properly encode php objects

• improved: slightly faster encoding of data which is internally UTF-8

• improved: debugger always generates a 'null' id for jsonrpc if user omits it

• new: debugger can take advantage of a graphical value builder (it has to be downloaded separately,
as part of jsxmlrpc package. See Appendix D for more details)

• new: support for the <NIL/> xmlrpc extension. see below for more details

• new: server support for the system.getCapabilities xmlrpc extension

• new: wrap_xmlrpc_method() [33] accepts two new options: debug and return_on_fault

2.1
• The wrap_php_function and wrap_xmlrpc_method functions have been moved out of

the base library file xmlrpc.inc into a file of their own: xmlrpc_wrappers.inc. You
will have to include() / require() it in your scripts if you have been using those functions.
For increased security, the automatic rebuilding of php object instances out of received xmlrpc
structs in wrap_xmlrpc_method() has been disabled (but it can be optionally re-enabled).
Both wrap_php_function() and wrap_xmlrpc_method() functions accept many more
options to fine tune their behaviour, including one to return the php code to be saved and later used
as standalone php script

• The constructor of xmlrpcval() values has seen some internal changes, and it will not throw a php
warning anymore when invoked using an unknown xmlrpc type: the error will only be written to
php error log. Also new xmlrpcval('true', 'boolean') is not supported anymore

• The new function php_xmlrpc_decode_xml() will take the xml representation of either an
xmlrpc request, response or single value and return the corresponding php-xmlrpc object instance

• A new function wrap_xmlrpc_server()has been added, to wrap all (or some) of the methods
exposed by a remote xmlrpc server into a php class

• A new file has been added: verify_compat.php, to help users diagnose the level of compliance
of their php installation with the library

• Restored compatibility with php 4.0.5 (for those poor souls still stuck on it)

• Method xmlrpc_server->service() now returns a value: either the response payload or
xmlrpcresp object instance

• Method xmlrpc_server->add_to_map() now accepts xmlrpc methods with no param
definitions

• Documentation for single parameters of exposed methods can be added to the dispatch map (and
turned into html docs in conjunction with a future release of the 'extras' package)

• Full response payload is saved into xmlrpcresp object for further debugging

What's new

6

• The debugger can now generate code that wraps a remote method into a php function (works for
jsonrpc, too); it also has better support for being activated via a single GET call (e.g. for integration
into other tools)

• Stricter parsing of incoming xmlrpc messages: two more invalid cases are now detected (double
data element inside array and struct/array after scalar inside value element)

• More logging of errors in a lot of situations

• Javadoc documentation of lib files (almost) complete

• Many performance tweaks and code cleanups, plus the usual crop of bugs fixed (see NEWS file
for complete list of bugs)

• Lib internals have been modified to provide better support for grafting extra functionality on top of
it. Stay tuned for future releases of the EXTRAS package (or go read Appendix B)...

2.0 final
• Added to the client class the possibility to use Digest and NTLM authentication methods (when

using the CURL library) for connecting to servers and NTLM for connecting to proxies

• Added to the client class the possibility to specify alternate certificate files/directories for
authenticating the peer with when using HTTPS communication

• Reviewed all examples and added a new demo file, containing a proxy to forward xmlrpc requests
to other servers (useful e.g. for ajax coding)

• The debugger has been upgraded to reflect the new client capabilities

• All known bugs have been squashed, and the lib is more tolerant than ever of commonly-found
mistakes

2.0 Release candidate 3
• Added to server class the property functions_parameters_type, that allows the server to register plain

php functions as xmlrpc methods (i.e. functions that do not take an xmlrpcmsg object as unique
param)

• let server and client objects serialize calls using a specified character set encoding for the produced
xml instead of US-ASCII (ISO-8859-1 and UTF-8 supported)

• let php_xmlrpc_decode accept xmlrpcmsg objects as valid input

• 'class::method' syntax is now accepted in the server dispatch map

• xmlrpc_clent::SetDebug() accepts integer values instead of a boolean value, with
debugging level 2 adding to the information printed to screen the complete client request

2.0 Release candidate 2
• Added a new property of the client object: xmlrpc_client->return_type, indicating

whether calls to the send() method will return xmlrpcresp objects whose value() is an xmlrpcval
object, a php value (automatically decoded) or the raw xml received from the server.

• Added in the extras dir. two new library file: jsonrpc.inc and jsonrpcs.inc containing
new classes that implement support for the json-rpc protocol (alpha quality code)

• Added a new client method: setKey($key, $keypass) to be used in HTTPS connections

What's new

7

• Added a new file containing some benchmarks in the testsuite directory

2.0 Release candidate 1
• Support for HTTP proxies (new method: xmlrpc_client::setProxy())

• Support HTTP compression of both requests and responses. Clients can specify what kind
of compression they accept for responses between deflate/gzip/any, and whether to compress
the requests. Servers by default compress responses to clients that explicitly declare support
for compression (new methods: xmlrpc_client::setAcceptedCompression(),
xmlrpc_client::setRequestCompression()). Note that the ZLIB php extension needs
to be enabled in PHP to support compression.

• Implement HTTP 1.1 connections, but only if CURL is enabled (added an extra parameter to
xmlrpc_client::xmlrpc_client to set the desired HTTP protocol at creation time and a
new supported value for the last parameter of xmlrpc_client::send, which now can be safely
omitted if it has been specified at creation time)

With PHP versions greater than 4.3.8 keep-alives are enabled by default for HTTP 1.1 connections.
This should yield faster execution times when making multiple calls in sequence to the same xml-
rpc server from a single client.

• Introduce support for cookies. Cookies to be sent to the server with a request can be set
using xmlrpc_client::setCookie(), while cookies received from the server are found in
xmlrpcresp::cookies(). It is left to the user to check for validity of received cookies and
decide whether they apply to successive calls or not.

• Better support for detecting different character set encodings of xml-rpc requests and responses:
both client and server objects will correctly detect the charset encoding of received xml, and use
an appropriate xml parser.

Supported encodings are US-ASCII, UTF-8 and ISO-8859-1.

• Added one new xmlrpcmsg constructor syntax, allowing usage of a single string with the complete
URL of the target server

• Convert xml-rpc boolean values into native php values instead of 0 and 1

• Force the php_xmlrpc_encode function to properly encode numerically indexed php arrays
into xml-rpc arrays (numerically indexed php arrays always start with a key of 0 and increment
keys by values of 1)

• Prevent the php_xmlrpc_encode function from further re-encoding any objects of class
xmlrpcval that are passed to it. This allows to call the function with arguments consisting of
mixed php values / xmlrpcval objects.

• Allow a server to NOT respond to system.* method calls (setting the $server-
>allow_system_funcs property).

• Implement a new xmlrpcval method to determine if a value of type struct has a member of a given
name without having to loop trough all members: xmlrpcval::structMemExists()

• Expand methods xmlrpcval::addArray, addScalar and addStruct allowing extra php
values to be added to xmlrpcval objects already formed.

• Let the xmlrpc_client::send method accept an XML string for sending instead of an
xmlrpcmsg object, to facilitate debugging and integration with the php native xmlrpc extension

• Extend the php_xmlrpc_encode and php_xmlrpc_decode functions to allow serialization
and rebuilding of PHP objects. To successfully rebuild a serialized object, the object class must be

What's new

8

defined in the deserializing end of the transfer. Note that object members of type resource will be
deserialized as NULL values.

Note that his has been implemented adding a "php_class" attribute to xml representation of
xmlrpcval of STRUCT type, which, strictly speaking, breaks the xml-rpc spec. Other xmlrpc
implementations are supposed to ignore such an attribute (unless they implement a brain-dead
custom xml parser...), so it should be safe enabling it in heterogeneous environments. The
activation of this feature is done by usage of an option passed as second parameter to both
php_xmlrpc_encode and php_xmlrpc_decode.

• Extend the php_xmlrpc_encode function to allow automatic serialization of iso8601-
conforming php strings as datetime.iso8601 xmlrpcvals, by usage of an optional parameter

• Added an automatic stub code generator for converting xmlrpc methods to php functions and vice-
versa.

This is done via two new functions: wrap_php_function and wrap_xmlrpc_method, and
has many caveats, with php being a typeless language and all...

With PHP versions lesser than 5.0.3 wrapping of php functions into xmlrpc methods is not supported
yet.

• Allow object methods to be used in server dispatch map

• Added a complete debugger solution, in the debugger folder

• Added configurable server-side debug messages, controlled by the new method
xmlrpc_server::SetDebug(). At level 0, no debug messages are sent to the client; level 1
is the same as the old behaviour; at level 2 a lot more info is echoed back to the client, regarding
the received call; at level 3 all warnings raised during server processing are trapped (this prevents
breaking the xml to be echoed back to the client) and added to the debug info sent back to the client

• New XML parsing code, yields smaller memory footprint and faster execution times, not to mention
complete elimination of the dreaded eval() construct, so prone to code injection exploits

• Rewritten most of the error messages, making text more explicative

9

Chapter 3. System Requirements
The library has been designed with goals of scalability and backward compatibility. As such, it
supports a wide range of PHP installs. Note that not all features of the lib are available in every
configuration.

The minimum supported PHP version is 5.1.

If you wish to use SSL or HTTP 1.1 to communicate with remote servers, you need the "curl" extension
compiled into your PHP installation.

The "xmlrpc" native extension is not required to be compiled into your PHP installation, but if it is,
there will be no interference with the operation of this library.

10

Chapter 4. Files in the distribution
lib/xmlrpc.inc the XML-RPC classes. include() this in your PHP files to use

the classes.

lib/xmlrpcs.inc the XML-RPC server class. include() this in addition to
xmlrpc.inc to get server functionality

lib/xmlrpc_wrappers.inc helper functions to "automagically" convert plain php functions
to xmlrpc services and vice versa

demo/server/proxy.php a sample server implementing xmlrpc proxy functionality.

demo/server/server.php a sample server hosting various demo functions, as well as a full
suite of functions used for interoperability testing. It is used by
testsuite.php (see below) for unit testing the library, and is not to
be copied literally into your production servers

demo/client/client.php, demo/
client/agesort.php, demo/client/
which.php

client code to exercise some of the functions in server.php,
including the interopEchoTests.whichToolkit
method.

demo/client/wrap.php client code to illustrate 'wrapping' of remote methods into php
functions.

demo/client/introspect.php client code to illustrate usage of introspection capabilities offered
by server.php.

demo/client/mail.php client code to illustrate usage of an xmlrpc-to-email gateway
using Dave Winer's XML-RPC server at userland.com.

demo/client/zopetest.php example client code that queries an xmlrpc server built in Zope.

demo/vardemo.php examples of how to construct xmlrpcval types

demo/demo1.txt, demo/
demo2.txt, demo/demo3.txt

XML-RPC responses captured in a file for testing purposes (you
can use these to test the xmlrpcmsg->parseResponse()
method).

demo/server/discuss.php,
demo/client/comment.php

Software used in the PHP chapter of The Jellyfish Book to provide
a comment server and allow the attachment of comments to stories
from Meerkat's data store.

test/testsuite.php, test/
parse_args.php

A unit test suite for this software package. If you do development
on this software, please consider submitting tests for this suite.

test/benchmark.php A (very limited) benchmarking suite for this software package. If
you do development on this software, please consider submitting
benchmarks for this suite.

test/phpunit.php, test/PHPUnit/
*.php

An (incomplete) version PEAR's unit test framework for PHP.
The complete package can be found at http://pear.php.net/
package/PHPUnit

test/verify_compat.php Script designed to help the user to verify the level of compatibility
of the library with the current php install

extras/test.pl, extras/test.py Perl and Python programs to exercise server.php to test that some
of the methods work.

http://pear.php.net/package/PHPUnit
http://pear.php.net/package/PHPUnit

Files in the distribution

11

extras/
workspace.testPhpServer.fttb

Frontier scripts to exercise the demo server. Thanks to Dave
Winer for permission to include these. See Dave's announcement
of these. [http://www.xmlrpc.com/discuss/msgReader$853]

extras/rsakey.pem A test certificate key for the SSL support, which can be used to
generate dummy certificates. It has the passphrase "test."

http://www.xmlrpc.com/discuss/msgReader$853
http://www.xmlrpc.com/discuss/msgReader$853
http://www.xmlrpc.com/discuss/msgReader$853

12

Chapter 5. Known bugs and
limitations

This started out as a bare framework. Many "nice" bits haven't been put in yet. Specifically, very little
type validation or coercion has been put in. PHP being a loosely-typed language, this is going to have
to be done explicitly (in other words: you can call a lot of library functions passing them arguments
of the wrong type and receive an error message only much further down the code, where it will be
difficult to understand).

dateTime.iso8601 is supported opaquely. It can't be done natively as the XML-RPC specification
explicitly forbids passing of timezone specifiers in ISO8601 format dates. You can, however, use the
iso8601_encode() and iso8601_decode() functions to do the encoding and decoding for you.

Very little HTTP response checking is performed (e.g. HTTP redirects are not followed and the
Content-Length HTTP header, mandated by the xml-rpc spec, is not validated); cookie support still
involves quite a bit of coding on the part of the user.

If a specific character set encoding other than US-ASCII, ISO-8859-1 or UTF-8 is received in the
HTTP header or XML prologue of xml-rpc request or response messages then it will be ignored for
the moment, and the content will be parsed as if it had been encoded using the charset defined by
xmlrpc_defencoding

Support for receiving from servers version 1 cookies (i.e. conforming to RFC 2965) is quite
incomplete, and might cause unforeseen errors.

13

Chapter 6. Support
Online Support

XML-RPC for PHP is offered "as-is" without any warranty or commitment to support. However,
informal advice and help is available via the XML-RPC for PHP website and mailing list and from
XML-RPC.com.

• The XML-RPC for PHP development is hosted on github.com/gggeek/phpxmlrpc [https://
github.com/gggeek/phpxmlrpc]. Bugs, feature requests and patches can be posted to the project's
website [https://github.com/gggeek/phpxmlrpc/issues].

• The PHP XML-RPC interest mailing list is run by the author. More details can be found here [http://
lists.gnomehack.com/mailman/listinfo/phpxmlrpc].

• For more general XML-RPC questions, there is a Yahoo! Groups XML-RPC mailing list [http://
groups.yahoo.com/group/xml-rpc/].

• The XML-RPC.com [http://www.xmlrpc.com/discuss] discussion group is a useful place to get help
with using XML-RPC. This group is also gatewayed into the Yahoo! Groups mailing list.

The Jellyfish Book

Together with Simon St.Laurent and Joe Johnston, Edd Dumbill wrote a book on XML-RPC for
O'Reilly and Associates on XML-RPC. It features a rather fetching jellyfish on the cover.

Complete details of the book are available from O'Reilly's web site. [http://www.oreilly.com/catalog/
progxmlrpc/]

Edd is responsible for the chapter on PHP, which includes a worked example of creating a forum
server, and hooking it up the O'Reilly's Meerkat [http://meerkat.oreillynet.com/] service in order to
allow commenting on news stories from around the Web.

If you've benefited from the effort that has been put into writing this software, then please consider
buying the book!

https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc
https://github.com/gggeek/phpxmlrpc/issues
https://github.com/gggeek/phpxmlrpc/issues
https://github.com/gggeek/phpxmlrpc/issues
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://lists.gnomehack.com/mailman/listinfo/phpxmlrpc
http://groups.yahoo.com/group/xml-rpc/
http://groups.yahoo.com/group/xml-rpc/
http://groups.yahoo.com/group/xml-rpc/
http://www.xmlrpc.com/discuss
http://www.xmlrpc.com/discuss
http://www.oreilly.com/catalog/progxmlrpc/
http://www.oreilly.com/catalog/progxmlrpc/
http://www.oreilly.com/catalog/progxmlrpc/
http://meerkat.oreillynet.com/
http://meerkat.oreillynet.com/

14

Chapter 7. Class documentation
xmlrpcval

This is where a lot of the hard work gets done. This class enables the creation and encapsulation of
values for XML-RPC.

Ensure you've read the XML-RPC spec at http://www.xmlrpc.com/stories/storyReader$7 before
reading on as it will make things clearer.

The xmlrpcval class can store arbitrarily complicated values using the following types: i4 int
boolean string double dateTime.iso8601 base64 array struct null. You
should refer to the spec [http://www.xmlrpc.com/spec] for more information on what each of these
types mean.

Notes on types

int

The type i4 is accepted as a synonym for int when creating xmlrpcval objects. The xml parsing
code will always convert i4 to int: int is regarded by this implementation as the canonical name
for this type.

base64

Base 64 encoding is performed transparently to the caller when using this type. Decoding is also
transparent. Therefore you ought to consider it as a "binary" data type, for use when you want to pass
data that is not 7-bit clean.

boolean

The php values true and 1 map to true. All other values (including the empty string) are converted
to false.

string

Characters <, >, ', ", &, are encoded using their entity reference as < > ' " and
& All other characters outside of the ASCII range are encoded using their character reference
representation (e.g. È for é). The XML-RPC spec recommends only encoding < & but
this implementation goes further, for reasons explained by the XML 1.0 recommendation [http://
www.w3.org/TR/REC-xml#syntax]. In particular, using character reference representation has the
advantage of producing XML that is valid independently of the charset encoding assumed.

null

There is no support for encoding null values in the XML-RPC spec, but at least a couple of extensions
(and many toolkits) do support it. Before using null values in your messages, make sure that the
responding party accepts them, and uses the same encoding convention (see ...).

Creation
The constructor is the normal way to create an xmlrpcval. The constructor can take these forms:

xmlrpcval new xmlrpcval (void)

xmlrpcval new xmlrpcval (string $stringVal)

http://www.xmlrpc.com/stories/storyReader$7
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.w3.org/TR/REC-xml#syntax
http://www.w3.org/TR/REC-xml#syntax
http://www.w3.org/TR/REC-xml#syntax

Class documentation

15

xmlrpcval new xmlrpcval (mixed $scalarVal, string $scalartyp)

xmlrpcval new xmlrpcval (array $arrayVal, string $arraytyp)

The first constructor creates an empty value, which must be altered using the methods addScalar,
addArray or addStruct before it can be used.

The second constructor creates a simple string value.

The third constructor is used to create a scalar value. The second parameter must be a name of an XML-
RPC type. Valid types are: "int", "boolean", "string", "double", "dateTime.iso8601",
"base64" or "null".

Examples:

$myInt = new xmlrpcvalue(1267, "int");
$myString = new xmlrpcvalue("Hello, World!", "string");
$myBool = new xmlrpcvalue(1, "boolean");
$myString2 = new xmlrpcvalue(1.24, "string"); // note: this will serialize a php float value as xmlrpc string

The fourth constructor form can be used to compose complex XML-RPC values. The first argument
is either a simple array in the case of an XML-RPC array or an associative array in the case of a
struct. The elements of the array must be xmlrpcval objects themselves.

The second parameter must be either "array" or "struct".

Examples:

$myArray = new xmlrpcval(
 array(
 new xmlrpcval("Tom"),
 new xmlrpcval("Dick"),
 new xmlrpcval("Harry")
),
 "array");

// recursive struct
$myStruct = new xmlrpcval(
 array(
 "name" => new xmlrpcval("Tom", "string"),
 "age" => new xmlrpcval(34, "int"),
 "address" => new xmlrpcval(
 array(
 "street" => new xmlrpcval("Fifht Ave", "string"),
 "city" => new xmlrpcval("NY", "string")
),
 "struct")
),
 "struct");

See the file vardemo.php in this distribution for more examples.

Methods

addScalar

int addScalar (string $stringVal)

int addScalar (mixed $scalarVal, string $scalartyp)

If $val is an empty xmlrpcval this method makes it a scalar value, and sets that value.

If $val is already a scalar value, then no more scalars can be added and 0 is returned.

If $val is an xmlrpcval of type array, the php value $scalarval is added as its last element.

Class documentation

16

If all went OK, 1 is returned, otherwise 0.

addArray

int addArray (array $arrayVal)

The argument is a simple (numerically indexed) array. The elements of the array must be xmlrpcval
objects themselves.

Turns an empty xmlrpcval into an array with contents as specified by $arrayVal.

If $val is an xmlrpcval of type array, the elements of $arrayVal are appended to the existing ones.

See the fourth constructor form for more information.

If all went OK, 1 is returned, otherwise 0.

addStruct

int addStruct (array $assocArrayVal)

The argument is an associative array. The elements of the array must be xmlrpcval objects
themselves.

Turns an empty xmlrpcval into a struct with contents as specified by $assocArrayVal.

If $val is an xmlrpcval of type struct, the elements of $arrayVal are merged with the existing ones.

See the fourth constructor form for more information.

If all went OK, 1 is returned, otherwise 0.

kindOf

string kindOf (void)

Returns a string containing "struct", "array" or "scalar" describing the base type of the value. If it
returns "undef" it means that the value hasn't been initialised.

serialize

string serialize (void)

Returns a string containing the XML-RPC representation of this value.

scalarVal

mixed scalarVal (void)

If $val->kindOf() == "scalar", this method returns the actual PHP-language value of the
scalar (base 64 decoding is automatically handled here).

scalarTyp

string scalarTyp (void)

If $val->kindOf() == "scalar", this method returns a string denoting the type of the scalar.
As mentioned before, i4 is always coerced to int.

arrayMem

xmlrpcval arrayMem (int $n)

Class documentation

17

If $val->kindOf() == "array", returns the $nth element in the array represented by the value
$val. The value returned is an xmlrpcval object.

// iterating over values of an array object
for ($i = 0; $i < $val->arraySize(); $i++)
{
 $v = $val->arrayMem($i);
 echo "Element $i of the array is of type ".$v->kindOf();
}

arraySize

int arraySize (void)

If $val is an array, returns the number of elements in that array.

structMem

xmlrpcval structMem (string $memberName)

If $val->kindOf() == "struct", returns the element called $memberName from the struct
represented by the value $val. The value returned is an xmlrpcval object.

structEach

array structEach (void)

Returns the next (key, value) pair from the struct, when $val is a struct. $value is an xmlrpcval
itself. See also structreset().

// iterating over all values of a struct object
$val->structreset();
while (list($key, $v) = $val->structEach())
{
 echo "Element $key of the struct is of type ".$v->kindOf();
}

structReset

void structReset (void)

Resets the internal pointer for structEach() to the beginning of the struct, where $val is a struct.

structMemExists

bool structMemExsists (string $memberName)

Returns TRUE or FALSE depending on whether a member of the given name exists in the struct.

xmlrpcmsg
This class provides a representation for a request to an XML-RPC server. A client sends an
xmlrpcmsg to a server, and receives back an xmlrpcresp (see xmlrpc_client->send).

Creation
The constructor takes the following forms:

xmlrpcmsg new xmlrpcmsg (string $methodName, array $parameterArray
= null)

Class documentation

18

Where methodName is a string indicating the name of the method you wish to invoke, and
parameterArray is a simple php Array of xmlrpcval objects. Here's an example message to
the US state name server:

$msg = new xmlrpcmsg("examples.getStateName", array(new xmlrpcval(23, "int")));

This example requests the name of state number 23. For more information on xmlrpcval objects,
see xmlrpcval.

Note that the parameterArray parameter is optional and can be omitted for methods that take no
input parameters or if you plan to add parameters one by one.

Methods

addParam

bool addParam (xmlrpcval $xmlrpcVal)

Adds the xmlrpcval xmlrpcVal to the parameter list for this method call. Returns TRUE or
FALSE on error.

getNumParams

int getNumParams (void)

Returns the number of parameters attached to this message.

getParam

xmlrpcval getParam (int $n)

Gets the nth parameter in the message (with the index zero-based). Use this method in server
implementations to retrieve the values sent by the client.

method

string method (void)

string method (string $methName)

Gets or sets the method contained in the XML-RPC message.

parseResponse

xmlrpcresp parseResponse (string $xmlString)

Given an incoming XML-RPC server response contained in the string $xmlString, this method
constructs an xmlrpcresp response object and returns it, setting error codes as appropriate (see
xmlrpc_client->send).

This method processes any HTTP/MIME headers it finds.

parseResponseFile

xmlrpcresp parseResponseFile (file handle resource $fileHandle)

Given an incoming XML-RPC server response on the open file handle fileHandle, this method
reads all the data it finds and passes it to parseResponse.

Class documentation

19

This method is useful to construct responses from pre-prepared files (see files demo1.txt,
demo2.txt, demo3.txt in this distribution). It processes any HTTP headers it finds, and does
not close the file handle.

serialize

string serialize (void)

Returns the an XML string representing the XML-RPC message.

xmlrpc_client
This is the basic class used to represent a client of an XML-RPC server.

Creation
The constructor accepts one of two possible syntaxes:

xmlrpc_client new xmlrpc_client (string $server_url)

xmlrpc_client new xmlrpc_client (string $server_path, string
$server_hostname, int $server_port = 80, string $transport = 'http')

Here are a couple of usage examples of the first form:

$client = new xmlrpc_client("http://phpxmlrpc.sourceforge.net/server.php");
$another_client = new xmlrpc_client("https://james:bond@secret.service.com:443/xmlrpcserver?agent=007");

The second syntax does not allow to express a username and password to be used for basic HTTP
authorization as in the second example above, but instead it allows to choose whether xmlrpc calls
will be made using the HTTP 1.0 or 1.1 protocol.

Here's another example client set up to query Userland's XML-RPC server at betty.userland.com:

$client = new xmlrpc_client("/RPC2", "betty.userland.com", 80);

The server_port parameter is optional, and if omitted will default to 80 when using HTTP and
443 when using HTTPS (see the xmlrpc_client->send method below).

The transport parameter is optional, and if omitted will default to 'http'. Allowed values are either
'http', 'https' or 'http11'. Its value can be overridden with every call to the send method. See the send
method below for more details about the meaning of the different values.

Methods
This class supports the following methods.

send

This method takes the forms:

xmlrpcresp send (xmlrpcmsg $xmlrpc_message, int $timeout, string
$transport)

array send (array $xmlrpc_messages, int $timeout, string $transport)

xmlrpcresp send (string $xml_payload, int $timeout, string
$transport)

Class documentation

20

Where xmlrpc_message is an instance of xmlrpcmsg (see xmlrpcmsg), and response is an
instance of xmlrpcresp (see xmlrpcresp).

If xmlrpc_messages is an array of message instances, responses will be an array of
response instances. The client will try to make use of a single system.multicall xml-rpc
method call to forward to the server all the messages in a single HTTP round trip, unless $client-
>no_multicall has been previously set to TRUE (see the multicall method below), in which case
many consecutive xmlrpc requests will be sent.

The third syntax allows to build by hand (or any other means) a complete xmlrpc request message, and
send it to the server. xml_payload should be a string containing the complete xml representation of
the request. It is e.g. useful when, for maximal speed of execution, the request is serialized into a string
using the native php xmlrpc functions (see the php manual on xmlrpc [http://www.php.net/xmlrpc]).

The timeout is optional, and will be set to 0 (wait for platform-specific predefined timeout) if
omitted. This timeout value is passed to fsockopen(). It is also used for detecting server timeouts
during communication (i.e. if the server does not send anything to the client for timeout seconds,
the connection will be closed).

The transport parameter is optional, and if omitted will default to the transport set using instance
creator or 'http' if omitted. The only other valid values are 'https', which will use an SSL HTTP
connection to connect to the remote server, and 'http11'. Note that your PHP must have the "curl"
extension compiled in order to use both these features. Note that when using SSL you should normally
set your port number to 443, unless the SSL server you are contacting runs at any other port.

Warning

PHP 4.0.6 has a bug which prevents SSL working.

In addition to low-level errors, the XML-RPC server you were querying may return an error in the
xmlrpcresp object. See xmlrpcresp for details of how to handle these errors.

multiCall

This method takes the form:

array multiCall (array $messages, int $timeout, string $transport,
bool $fallback)

This method is used to boxcar many method calls in a single xml-rpc request. It will try first to make
use of the system.multicall xml-rpc method call, and fall back to executing many separate
requests if the server returns any error.

msgs is an array of xmlrpcmsg objects (see xmlrpcmsg), and response is an array of
xmlrpcresp objects (see xmlrpcresp).

The timeout and transport parameters are optional, and behave as in the send method above.

The fallback parameter is optional, and defaults to TRUE. When set to FALSE it will prevent the
client to try using many single method calls in case of failure of the first multicall request. It should
be set only when the server is known to support the multicall extension.

setAcceptedCompression

void setAcceptedCompression (string $compressionmethod)

This method defines whether the client will accept compressed xml payload forming the bodies of
the xmlrpc responses received from servers. Note that enabling reception of compressed responses
merely adds some standard http headers to xmlrpc requests. It is up to the xmlrpc server to return

http://www.php.net/xmlrpc
http://www.php.net/xmlrpc

Class documentation

21

compressed responses when receiving such requests. Allowed values for compressionmethod
are: 'gzip', 'deflate', 'any' or null (with any meaning either gzip or deflate).

This requires the "zlib" extension to be enabled in your php install. If it is, by default
xmlrpc_client instances will enable reception of compressed content.

setCaCertificate

void setCaCertificate (string $certificate, bool $is_dir)

This method sets an optional certificate to be used in SSL-enabled communication to validate a remote
server with (when the server_method is set to 'https' in the client's construction or in the send
method and SetSSLVerifypeer has been set to TRUE).

The certificate parameter must be the filename of a PEM formatted certificate, or a directory
containing multiple certificate files. The is_dir parameter defaults to FALSE, set it to TRUE to
specify that certificate indicates a directory instead of a single file.

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for the curl_setopt function.

setCertificate

void setCertificate (string $certificate, string $passphrase)

This method sets the optional certificate and passphrase used in SSL-enabled communication with a
remote server (when the server_method is set to 'https' in the client's construction or in the send
method).

The certificate parameter must be the filename of a PEM formatted certificate. The
passphrase parameter must contain the password required to use the certificate.

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for the curl_setopt function.

Note: to retrieve information about the client certificate on the server side, you will need to look into
the environment variables which are set up by the webserver. Different webservers will typically set
up different variables.

setCookie

void setCookie (string $name, string $value, string $path, string
$domain, int $port)

This method sets a cookie that will be sent to the xmlrpc server along with every further request (useful
e.g. for keeping session info outside of the xml-rpc payload).

$value is optional, and defaults to null.

$path, $domain and $port are optional, and will be omitted from the cookie header if
unspecified. Note that setting any of these values will turn the cookie into a 'version 1' cookie, that
might not be fully supported by the server (see RFC2965 for more details).

setCredentials

void setCredentials (string $username, string $password, int
$authtype)

This method sets the username and password for authorizing the client to a server. With the
default (HTTP) transport, this information is used for HTTP Basic authorization. Note that username

Class documentation

22

and password can also be set using the class constructor. With HTTP 1.1 and HTTPS transport,
NTLM and Digest authentication protocols are also supported. To enable them use the constants
CURLAUTH_DIGEST and CURLAUTH_NTLM as values for the authtype parameter.

setCurlOptions

void setCurlOptions (array $options)

This method allows to directly set any desired option to manipulate the usage of the cURL client
(when in cURL mode). It can be used eg. to explicitly bind to an outgoing ip address when the server
is multihomed

setDebug

void setDebug (int $debugLvl)

debugLvl is either 0, 1 or 2 depending on whether you require the client to print debugging
information to the browser. The default is not to output this information (0).

The debugging information at level 1includes the raw data returned from the XML-RPC server it
was querying (including bot HTTP headers and the full XML payload), and the PHP value the client
attempts to create to represent the value returned by the server. At level2, the complete payload of the
xmlrpc request is also printed, before being sent t the server.

This option can be very useful when debugging servers as it allows you to see exactly what the client
sends and the server returns.

setKey

void setKey (int $key, int $keypass)

This method sets the optional certificate key and passphrase used in SSL-enabled communication
with a remote server (when the transport is set to 'https' in the client's construction or in the send
method).

This requires the "curl" extension to be compiled into your installation of PHP. For more details see
the man page for the curl_setopt function.

setProxy

void setProxy (string $proxyhost, int $proxyport, string
$proxyusername, string $proxypassword, int $authtype)

This method enables calling servers via an HTTP proxy. The proxyusername, proxypassword
and authtype parameters are optional. Authtype defaults to CURLAUTH_BASIC (Basic
authentication protocol); the only other valid value is the constant CURLAUTH_NTLM, and has effect
only when the client uses the HTTP 1.1 protocol.

NB: CURL versions before 7.11.10 cannot use a proxy to communicate with https servers.

setRequestCompression

void setRequestCompression (string $compressionmethod)

This method defines whether the xml payload forming the request body will be sent to the server
in compressed format, as per the HTTP specification. This is particularly useful for large request
parameters and over slow network connections. Allowed values for compressionmethod are:
'gzip', 'deflate', 'any' or null (with any meaning either gzip or deflate). Note that there is no automatic

Class documentation

23

fallback mechanism in place for errors due to servers not supporting receiving compressed request
bodies, so make sure that the particular server you are querying does accept compressed requests
before turning it on.

This requires the "zlib" extension to be enabled in your php install.

setSSLVerifyHost

void setSSLVerifyHost (int $i)

This method defines whether connections made to XML-RPC backends via HTTPS should verify the
remote host's SSL certificate's common name (CN). By default, only the existence of a CN is checked.
$i should be an integer value; 0 to not check the CN at all, 1 to merely check for its existence, and 2
to check that the CN on the certificate matches the hostname that is being connected to.

setSSLVerifyPeer

void setSSLVerifyPeer (bool $i)

This method defines whether connections made to XML-RPC backends via HTTPS should verify the
remote host's SSL certificate, and cause the connection to fail if the cert verification fails. $i should
be a boolean value. Default value: TRUE. To specify custom SSL certificates to validate the server
with, use the setCaCertificate method.

setSSLVersion

void setSSLVersion (int $i)

This method sets the SSL version to be used when making https calls. See the PHP manual for
CURLOPT_SSLVERSION for a description of the allowed values.

setUserAgent

void Useragent (string $useragent)

This method sets a custom user-agent that will be used by the client in the http headers sent with the
request. The default value is built using the library name and version constants.

Variables
NB: direct manipulation of these variables is only recommended for advanced users.

no_multicall

This member variable determines whether the multicall() method will try to take advantage of the
system.multicall xmlrpc method to dispatch to the server an array of requests in a single http roundtrip
or simply execute many consecutive http calls. Defaults to FALSE, but it will be enabled automatically
on the first failure of execution of system.multicall.

request_charset_encoding

This is the charset encoding that will be used for serializing request sent by the client.

If defaults to NULL, which means using US-ASCII and encoding all characters outside of the ASCII
range using their xml character entity representation (this has the benefit that line end characters will
not be mangled in the transfer, a CR-LF will be preserved as well as a singe LF).

Valid values are 'US-ASCII', 'UTF-8' and 'ISO-8859-1'

Class documentation

24

return_type

This member variable determines whether the value returned inside an xmlrpcresp object as results
of calls to the send() and multicall() methods will be an xmlrpcval object, a plain php value or a raw
xml string. Allowed values are 'xmlrpcvals' (the default), 'phpvals' and 'xml'. To allow the user to
differentiate between a correct and a faulty response, fault responses will be returned as xmlrpcresp
objects in any case. Note that the 'phpvals' setting will yield faster execution times, but some of the
information from the original response will be lost. It will be e.g. impossible to tell whether a particular
php string value was sent by the server as an xmlrpc string or base64 value.

Example usage:

$client = new xmlrpc_client("phpxmlrpc.sourceforge.net/server.php");
$client->return_type = 'phpvals';
$message = new xmlrpcmsg("examples.getStateName", array(new xmlrpcval(23, "int")));
$resp = $client->send($message);
if ($resp->faultCode()) echo 'KO. Error: '.$resp->faultString(); else echo 'OK: got '.$resp->value();

For more details about usage of the 'xml' value, see Appendix A.

xmlrpcresp
This class is used to contain responses to XML-RPC requests. A server method handler will construct
an xmlrpcresp and pass it as a return value. This same value will be returned by the result of an
invocation of the send method of the xmlrpc_client class.

Creation
xmlrpcresp new xmlrpcresp (xmlrpcval $xmlrpcval)

xmlrpcresp new xmlrpcresp (0, int $errcode, string $err_string)

The first syntax is used when execution has happened without difficulty: $xmlrpcval is an
xmlrpcval value with the result of the method execution contained in it. Alternatively it can be a
string containing the xml serialization of the single xml-rpc value result of method execution.

The second type of constructor is used in case of failure. errcode and err_string are used to
provide indication of what has gone wrong. See xmlrpc_server for more information on passing error
codes.

Methods

faultCode

int faultCode (void)

Returns the integer fault code return from the XML-RPC response. A zero value indicates success,
any other value indicates a failure response.

faultString

string faultString (void)

Returns the human readable explanation of the fault indicated by $resp->faultCode().

value

xmlrpcval value (void)

Class documentation

25

Returns an xmlrpcval object containing the return value sent by the server. If the response's
faultCode is non-zero then the value returned by this method should not be used (it may not even
be an object).

Note: if the xmlrpcresp instance in question has been created by an xmlrpc_client object whose
return_type was set to 'phpvals', then a plain php value will be returned instead of an xmlrpcval
object. If the return_type was set to 'xml', an xml string will be returned (see the return_type
member var above for more details).

serialize

string serialize (void)

Returns an XML string representation of the response (xml prologue not included).

xmlrpc_server
The implementation of this class has been kept as simple to use as possible. The constructor for the
server basically does all the work. Here's a minimal example:

 function foo ($xmlrpcmsg) {
 ...
 return new xmlrpcresp($some_xmlrpc_val);
 }

 class bar {
 function foobar($xmlrpcmsg) {
 ...
 return new xmlrpcresp($some_xmlrpc_val);
 }
 }

 $s = new xmlrpc_server(
 array(
 "examples.myFunc1" => array("function" => "foo"),
 "examples.myFunc2" => array("function" => "bar::foobar"),
));

This performs everything you need to do with a server. The single constructor argument is an
associative array from xmlrpc method names to php function names. The incoming request is parsed
and dispatched to the relevant php function, which is responsible for returning a xmlrpcresp object,
that will be serialized back to the caller.

Method handler functions
Both php functions and class methods can be registered as xmlrpc method handlers.

The synopsis of a method handler function is:

xmlrpcresp $resp = function (xmlrpcmsg $msg)

No text should be echoed 'to screen' by the handler function, or it will break the xml response
sent back to the client. This applies also to error and warning messages that PHP prints to screen
unless the appropriate parameters have been set in the php.in file. Another way to prevent echoing of
errors inside the response and facilitate debugging is to use the server SetDebug method with debug
level 3 (see ...). Exceptions thrown duting execution of handler functions are caught by default and
a XML-RPC error reponse is generated instead. This behaviour can be finetuned by usage of the
exception_handling member variable (see ...).

Note that if you implement a method with a name prefixed by system. the handler function will
be invoked by the server with two parameters, the first being the server itself and the second being
the xmlrpcmsg object.

Class documentation

26

The same php function can be registered as handler of multiple xmlrpc methods.

Here is a more detailed example of what the handler function foo may do:

 function foo ($xmlrpcmsg) {
 global $xmlrpcerruser; // import user errcode base value

 $meth = $xmlrpcmsg->method(); // retrieve method name
 $par = $xmlrpcmsg->getParam(0); // retrieve value of first parameter - assumes at least one param received
 $val = $par->scalarval(); // decode value of first parameter - assumes it is a scalar value

 ...

 if ($err) {
 // this is an error condition
 return new xmlrpcresp(0, $xmlrpcerruser+1, // user error 1
 "There's a problem, Captain");
 } else {
 // this is a successful value being returned
 return new xmlrpcresp(new xmlrpcval("All's fine!", "string"));
 }
 }

See server.php in this distribution for more examples of how to do this.

Since release 2.0RC3 there is a new, even simpler way of registering php functions with the server.
See section 5.7 below

The dispatch map
The first argument to the xmlrpc_server constructor is an array, called the dispatch map. In this
array is the information the server needs to service the XML-RPC methods you define.

The dispatch map takes the form of an associative array of associative arrays: the outer array has one
entry for each method, the key being the method name. The corresponding value is another associative
array, which can have the following members:

• function - this entry is mandatory. It must be either a name of a function in the global scope
which services the XML-RPC method, or an array containing an instance of an object and a static
method name (for static class methods the 'class::method' syntax is also supported).

• signature - this entry is an array containing the possible signatures (see Signatures) for the
method. If this entry is present then the server will check that the correct number and type of
parameters have been sent for this method before dispatching it.

• docstring - this entry is a string containing documentation for the method. The documentation
may contain HTML markup.

• signature_docs - this entry can be used to provide documentation for the single
parameters. It must match in structure the 'signature' member. By default, only the
documenting_xmlrpc_server class in the extras package will take advantage of this, since
the "system.methodHelp" protocol does not support documenting method parameters individually.

• parameters_type - this entry can be used when the server is working in 'xmlrpcvals' mode
(see ...) to define one or more entries in the dispatch map as being functions that follow the 'phpvals'
calling convention. The only useful value is currently the string phpvals.

Look at the server.php example in the distribution to see what a dispatch map looks like.

Method signatures
A signature is a description of a method's return type and its parameter types. A method may have
more than one signature.

Class documentation

27

Within a server's dispatch map, each method has an array of possible signatures. Each signature is an
array of types. The first entry is the return type. For instance, the method

string examples.getStateName(int)

has the signature

array($xmlrpcString, $xmlrpcInt)

and, assuming that it is the only possible signature for the method, it might be used like this in server
creation:

$findstate_sig = array(array($xmlrpcString, $xmlrpcInt));

$findstate_doc = 'When passed an integer between 1 and 51 returns the
name of a US state, where the integer is the index of that state name
in an alphabetic order.';

$s = new xmlrpc_server(array(
 "examples.getStateName" => array(
 "function" => "findstate",
 "signature" => $findstate_sig,
 "docstring" => $findstate_doc
)));

Note that method signatures do not allow to check nested parameters, e.g. the number, names and
types of the members of a struct param cannot be validated.

If a method that you want to expose has a definite number of parameters, but each of those parameters
could reasonably be of multiple types, the array of acceptable signatures will easily grow into a
combinatorial explosion. To avoid such a situation, the lib defines the global var $xmlrpcValue,
which can be used in method signatures as a placeholder for 'any xmlrpc type':

$echoback_sig = array(array($xmlrpcValue, $xmlrpcValue));

$findstate_doc = 'Echoes back to the client the received value, regardless of its type';

$s = new xmlrpc_server(array(
 "echoBack" => array(
 "function" => "echoback",
 "signature" => $echoback_sig, // this sig guarantees that the method handler will be called with one and only one parameter
 "docstring" => $echoback_doc
)));

Methods system.listMethods, system.methodHelp, system.methodSignature and
system.multicall are already defined by the server, and should not be reimplemented (see
Reserved Methods below).

Delaying the server response
You may want to construct the server, but for some reason not fulfill the request immediately (security
verification, for instance). If you omit to pass to the constructor the dispatch map or pass it a second
argument of 0 this will have the desired effect. You can then use the service() method of the
server class to service the request. For example:

$s = new xmlrpc_server($myDispMap, 0); // second parameter = 0 prevents automatic servicing of request

// ... some code that does other stuff here

$s->service();

Note that the service method will print the complete result payload to screen and send appropriate
HTTP headers back to the client, but also return the response object. This permits further manipulation
of the response, possibly in combination with output buffering.

Class documentation

28

To prevent the server from sending HTTP headers back to the client, you can pass a second parameter
with a value of TRUE to the service method. In this case, the response payload will be returned
instead of the response object.

Xmlrpc requests retrieved by other means than HTTP POST bodies can also be processed. For
example:

$s = new xmlrpc_server(); // not passing a dispatch map prevents automatic servicing of request

// ... some code that does other stuff here, including setting dispatch map into server object

$resp = $s->service($xmlrpc_request_body, true); // parse a variable instead of POST body, retrieve response payload

// ... some code that does other stuff with xml response $resp here

Modifying the server behaviour
A couple of methods / class variables are available to modify the behaviour of the server. The only
way to take advantage of their existence is by usage of a delayed server response (see above)

setDebug()

This function controls weather the server is going to echo debugging messages back to the client as
comments in response body. Valid values: 0,1,2,3, with 1 being the default. At level 0, no debug info
is returned to the client. At level 2, the complete client request is added to the response, as part of the
xml comments. At level 3, a new PHP error handler is set when executing user functions exposed as
server methods, and all non-fatal errors are trapped and added as comments into the response.

allow_system_funcs

Default_value: TRUE. When set to FALSE, disables support for System.xxx functions in
the server. It might be useful e.g. if you do not wish the server to respond to requests to
System.ListMethods.

compress_response

When set to TRUE, enables the server to take advantage of HTTP compression, otherwise disables it.
Responses will be transparently compressed, but only when an xmlrpc-client declares its support for
compression in the HTTP headers of the request.

Note that the ZLIB php extension must be installed for this to work. If it is, compress_response
will default to TRUE.

exception_handling

This variable controls the behaviour of the server when an exception is thrown by a method handler
php function. Valid values: 0,1,2, with 0 being the default. At level 0, the server catches the exception
and return an 'internal error' xmlrpc response; at 1 it catches the exceptions and return an xmlrpc
response with the error code and error message corresponding to the exception that was thron; at 2 =
the exception is floated to the upper layers in the code

response_charset_encoding

Charset encoding to be used for response (only affects string values).

If it can, the server will convert the generated response from internal_encoding to the intended one.

Valid values are: a supported xml encoding (only UTF-8 and ISO-8859-1 at present, unless mbstring
is enabled), null (leave charset unspecified in response and convert output stream to US_ASCII),

Class documentation

29

'default' (use xmlrpc library default as specified in xmlrpc.inc, convert output stream if needed), or
'auto' (use client-specified charset encoding or same as request if request headers do not specify it
(unless request is US-ASCII: then use library default anyway).

Fault reporting
Fault codes for your servers should start at the value indicated by the global $xmlrpcerruser + 1.

Standard errors returned by the server include:

1 Unknown method Returned if the server was asked to dispatch a method it didn't
know about

2 Invalid return payload This error is actually generated by the client, not server,
code, but signifies that a server returned something it couldn't
understand. A more detailed error report is sometimes added
onto the end of the phrase above.

3 Incorrect parameters This error is generated when the server has signature(s) defined
for a method, and the parameters passed by the client do not
match any of signatures.

4 Can't introspect: method
unknown

This error is generated by the builtin system.* methods
when any kind of introspection is attempted on a method
undefined by the server.

5 Didn't receive 200 OK from
remote server

This error is generated by the client when a remote server
doesn't return HTTP/1.1 200 OK in response to a request. A
more detailed error report is added onto the end of the phrase
above.

6 No data received from server This error is generated by the client when a remote server
returns HTTP/1.1 200 OK in response to a request, but no
response body follows the HTTP headers.

7 No SSL support compiled in This error is generated by the client when trying to send a
request with HTTPS and the CURL extension is not available
to PHP.

8 CURL error This error is generated by the client when trying to send a
request with HTTPS and the HTTPS communication fails.

9-14 multicall errors These errors are generated by the server when something fails
inside a system.multicall request.

100- XML parse errors Returns 100 plus the XML parser error code for the fault that
occurred. The faultString returned explains where the
parse error was in the incoming XML stream.

'New style' servers
In the same spirit of simplification that inspired the xmlrpc_client::return_type class
variable, a new class variable has been added to the server class: functions_parameters_type.
When set to 'phpvals', the functions registered in the server dispatch map will be called with plain
php values as parameters, instead of a single xmlrpcmsg instance parameter. The return value of those
functions is expected to be a plain php value, too. An example is worth a thousand words:

 function foo($usr_id, $out_lang='en') {
 global $xmlrpcerruser;

Class documentation

30

 ...

 if ($someErrorCondition)
 return new xmlrpcresp(0, $xmlrpcerruser+1, 'DOH!');
 else
 return array(
 'name' => 'Joe',
 'age' => 27,
 'picture' => new xmlrpcval(file_get_contents($picOfTheGuy), 'base64')
);
 }

 $s = new xmlrpc_server(
 array(
 "examples.myFunc" => array(
 "function" => "bar::foobar",
 "signature" => array(
 array($xmlrpcString, $xmlrpcInt),
 array($xmlrpcString, $xmlrpcInt, $xmlrpcString)
)
)
), false);
 $s->functions_parameters_type = 'phpvals';
 $s->service();

There are a few things to keep in mind when using this simplified syntax:

to return an xmlrpc error, the method handler function must return an instance of xmlrpcresp. The
only other way for the server to know when an error response should be served to the client is to throw
an exception and set the server's exception_handling memeber var to 1;

to return a base64 value, the method handler function must encode it on its own, creating an instance
of an xmlrpcval object;

the method handler function cannot determine the name of the xmlrpc method it is serving, unlike
standard handler functions that can retrieve it from the message object;

when receiving nested parameters, the method handler function has no way to distinguish a php string
that was sent as base64 value from one that was sent as a string value;

this has a direct consequence on the support of system.multicall: a method whose signature contains
datetime or base64 values will not be available to multicall calls;

last but not least, the direct parsing of xml to php values is much faster than using xmlrpcvals, and
allows the library to handle much bigger messages without allocating all available server memory or
smashing PHP recursive call stack.

31

Chapter 8. Global variables
Many global variables are defined in the xmlrpc.inc file. Some of those are meant to be used as
constants (and modifying their value might cause unpredictable behaviour), while some others can be
modified in your php scripts to alter the behaviour of the xml-rpc client and server.

"Constant" variables

$xmlrpcerruser
 $xmlrpcerruser = 800;

The minimum value for errors reported by user implemented XML-RPC servers. Error numbers lower
than that are reserved for library usage.

$xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean,
$xmlrpcDouble, $xmlrpcString, $xmlrpcDateTime,
$xmlrpcBase64, $xmlrpcArray, $xmlrpcStruct,
$xmlrpcValue, $xmlrpcNull

For convenience the strings representing the XML-RPC types have been encoded as global variables:

$xmlrpcI4="i4";
$xmlrpcInt="int";
$xmlrpcBoolean="boolean";
$xmlrpcDouble="double";
$xmlrpcString="string";
$xmlrpcDateTime="dateTime.iso8601";
$xmlrpcBase64="base64";
$xmlrpcArray="array";
$xmlrpcStruct="struct";
$xmlrpcValue="undefined";
$xmlrpcNull="null";

$xmlrpcTypes, $xmlrpc_valid_parents, $xmlrpcerr,
$xmlrpcstr, $xmlrpcerrxml, $xmlrpc_backslash,
$_xh, $xml_iso88591_Entities, $xmlEntities,
$xmlrpcs_capabilities

Reserved for internal usage.

Variables whose value can be modified

xmlrpc_defencoding
 $xmlrpc_defencoding = "UTF8";

This variable defines the character set encoding that will be used by the xml-rpc client and server
to decode the received messages, when a specific charset declaration is not found (in the messages
sent non-ascii chars are always encoded using character references, so that the produced xml is valid
regardless of the charset encoding assumed).

Global variables

32

Allowed values: "UTF8", "ISO-8859-1", "ASCII".

Note that the appropriate RFC actually mandates that XML received over HTTP without indication
of charset encoding be treated as US-ASCII, but many servers and clients 'in the wild' violate the
standard, and assume the default encoding is UTF-8.

xmlrpc_internalencoding
 $xmlrpc_internalencoding = "ISO-8859-1";

This variable defines the character set encoding that the library uses to transparently encode into valid
XML the xml-rpc values created by the user and to re-encode the received xml-rpc values when it
passes them to the PHP application. It only affects xml-rpc values of string type. It is a separate value
from xmlrpc_defencoding, allowing e.g. to send/receive xml messages encoded on-the-wire in US-
ASCII and process them as UTF-8. It defaults to the character set used internally by PHP (unless you
are running an MBString-enabled installation), so you should change it only in special situations, if
e.g. the string values exchanged in the xml-rpc messages are directly inserted into / fetched from a
database configured to return UTF8 encoded strings to PHP. Example usage:

<?php

include('xmlrpc.inc');
$xmlrpc_internalencoding = 'UTF-8'; // this has to be set after the inclusion above
$v = new xmlrpcval('Îºá½¹Ï#Î¼Îµ'); // This xmlrpc value will be correctly serialized as the greek word 'kosme'

xmlrpcName
 $xmlrpcName = "XML-RPC for PHP";

The string representation of the name of the XML-RPC for PHP library. It is used by the client for
building the User-Agent HTTP header that is sent with every request to the server. You can change
its value if you need to customize the User-Agent string.

xmlrpcVersion
 $xmlrpcVersion = "2.2";

The string representation of the version number of the XML-RPC for PHP library in use. It is used by
the client for building the User-Agent HTTP header that is sent with every request to the server. You
can change its value if you need to customize the User-Agent string.

xmlrpc_null_extension
When set to TRUE, the lib will enable support for the <NIL/> (and <EX:NIL/>) xmlrpc value, as per
the extension to the standard proposed here. This means that <NIL/> and <EX:NIL/> tags received will
be parsed as valid xmlrpc, and the corresponding xmlrpcvals will return "null" for scalarTyp().

xmlrpc_null_apache_encoding
When set to TRUE, php NULL values encoded into xmlrpcval objects get serialized using the
<EX:NIL/> tag instead of <NIL/>. Please note that both forms are always accepted as input
regardless of the value of this variable.

33

Chapter 9. Helper functions
XML-RPC for PHP contains some helper functions which you can use to make processing of XML-
RPC requests easier.

Date functions
The XML-RPC specification has this to say on dates:

Don't assume a timezone. It should be specified by the server in its documentation
what assumptions it makes about timezones.

Unfortunately, this means that date processing isn't straightforward. Although XML-RPC uses ISO
8601 format dates, it doesn't use the timezone specifier.

We strongly recommend that in every case where you pass dates in XML-RPC calls, you use UTC
(GMT) as your timezone. Most computer languages include routines for handling GMT times natively,
and you won't have to translate between timezones.

For more information about dates, see ISO 8601: The Right Format for Dates [http://www.uic.edu/
year2000/datefmt.html], which has a handy link to a PDF of the ISO 8601 specification. Note that
XML-RPC uses exactly one of the available representations: CCYYMMDDTHH:MM:SS.

iso8601_encode
string iso8601_encode (string $time_t, int $utc = 0)

Returns an ISO 8601 formatted date generated from the UNIX timestamp $time_t, as returned by
the PHP function time().

The argument $utc can be omitted, in which case it defaults to 0. If it is set to 1, then the function
corrects the time passed in for UTC. Example: if you're in the GMT-6:00 timezone and set $utc, you
will receive a date representation six hours ahead of your local time.

The included demo program vardemo.php includes a demonstration of this function.

iso8601_decode
int iso8601_decode (string $isoString, int $utc = 0)

Returns a UNIX timestamp from an ISO 8601 encoded time and date string passed in. If $utc is 1
then $isoString is assumed to be in the UTC timezone, and thus the result is also UTC: otherwise,
the timezone is assumed to be your local timezone and you receive a local timestamp.

Easy use with nested PHP values
Dan Libby was kind enough to contribute two helper functions that make it easier to translate to and
from PHP values. This makes it easier to deal with complex structures. At the moment support is
limited to int, double, string, array, datetime and struct datatypes; note also that all PHP arrays are
encoded as structs, except arrays whose keys are integer numbers starting with 0 and incremented by 1.

These functions reside in xmlrpc.inc.

php_xmlrpc_decode
mixed php_xmlrpc_decode (xmlrpcval $xmlrpc_val, array $options)

http://www.uic.edu/year2000/datefmt.html
http://www.uic.edu/year2000/datefmt.html
http://www.uic.edu/year2000/datefmt.html

Helper functions

34

array php_xmlrpc_decode (xmlrpcmsg $xmlrpcmsg_val, string $options)

Returns a native PHP value corresponding to the values found in the xmlrpcval $xmlrpc_val,
translated into PHP types. Base-64 and datetime values are automatically decoded to strings.

In the second form, returns an array containing the parameters of the given xmlrpcmsg_val,
decoded to php types.

The options parameter is optional. If specified, it must consist of an array of options to be
enabled in the decoding process. At the moment the only valid option are decode_php_objs and
dates_as_objects. When the first is set, php objects that have been converted to xml-rpc structs
using the php_xmlrpc_encode function and a corresponding encoding option will be converted
back into object values instead of arrays (provided that the class definition is available at reconstruction
time). When the second is set, XML-RPC datetime values will be converted into native dateTime
objects instead of strings.

WARNING: please take extreme care before enabling the decode_php_objs option: when php objects
are rebuilt from the received xml, their constructor function will be silently invoked. This means that
you are allowing the remote end to trigger execution of uncontrolled PHP code on your server, opening
the door to code injection exploits. Only enable this option when you have complete trust of the remote
server/client.

Example:

// wrapper to expose an existing php function as xmlrpc method handler
function foo_wrapper($m)
{
 $params = php_xmlrpc_decode($m);
 $retval = call_user_func_array('foo', $params);
 return new xmlrpcresp(new xmlrpcval($retval)); // foo return value will be serialized as string
}

$s = new xmlrpc_server(array(
 "examples.myFunc1" => array(
 "function" => "foo_wrapper",
 "signatures" => ...
)));

php_xmlrpc_encode
xmlrpcval php_xmlrpc_encode (mixed $phpval, array $options)

Returns an xmlrpcval object populated with the PHP values in $phpval. Works recursively on
arrays and objects, encoding numerically indexed php arrays into array-type xmlrpcval objects and
non numerically indexed php arrays into struct-type xmlrpcval objects. Php objects are encoded into
struct-type xmlrpcvals, excepted for php values that are already instances of the xmlrpcval class or
descendants thereof, which will not be further encoded. Note that there's no support for encoding php
values into base-64 values. Encoding of date-times is optionally carried on on php strings with the
correct format.

The options parameter is optional. If specified, it must consist of an array of options to be
enabled in the encoding process. At the moment the only valid options are encode_php_objs,
null_extension and auto_dates.

The first will enable the creation of 'particular' xmlrpcval objects out of php objects, that add
a "php_class" xml attribute to their serialized representation. This attribute allows the function
php_xmlrpc_decode to rebuild the native php objects (provided that the same class definition exists
on both sides of the communication). The second allows to encode php NULL values to the <NIL/
> (or <EX:NIL/>, see ...) tag. The last encodes any string that matches the ISO8601 format into an
XML-RPC datetime.

Example:

Helper functions

35

// the easy way to build a complex xml-rpc struct, showing nested base64 value and datetime values
$val = php_xmlrpc_encode(array(
 'first struct_element: an int' => 666,
 'second: an array' => array ('apple', 'orange', 'banana'),
 'third: a base64 element' => new xmlrpcval('hello world', 'base64'),
 'fourth: a datetime' => '20060107T01:53:00'
), array('auto_dates'));

php_xmlrpc_decode_xml
xmlrpcval | xmlrpcresp | xmlrpcmsg php_xmlrpc_decode_xml (string
$xml, array $options)

Decodes the xml representation of either an xmlrpc request, response or single value, returning the
corresponding php-xmlrpc object, or FALSE in case of an error.

The options parameter is optional. If specified, it must consist of an array of options to be enabled
in the decoding process. At the moment, no option is supported.

Example:

$text = '<value><array><data><value>Hello world</value></data></array></value>';
$val = php_xmlrpc_decode_xml($text);
if ($val) echo 'Found a value of type '.$val->kindOf(); else echo 'Found invalid xml';

Automatic conversion of php functions into
xmlrpc methods (and vice versa)

For the extremely lazy coder, helper functions have been added that allow to convert a php function
into an xmlrpc method, and a remotely exposed xmlrpc method into a local php function - or a set of
methods into a php class. Note that these comes with many caveat.

wrap_xmlrpc_method
string wrap_xmlrpc_method ($client, $methodname, $extra_options)

string wrap_xmlrpc_method ($client, $methodname, $signum, $timeout,
$protocol, $funcname)

Given an xmlrpc server and a method name, creates a php wrapper function that will call the remote
method and return results using native php types for both params and results. The generated php
function will return an xmlrpcresp object for failed xmlrpc calls.

The second syntax is deprecated, and is listed here only for backward compatibility.

The server must support the system.methodSignature xmlrpc method call for this function to
work.

The client param must be a valid xmlrpc_client object, previously created with the address of the
target xmlrpc server, and to which the preferred communication options have been set.

The optional parameters can be passed as array key,value pairs in the extra_options param.

The signum optional param has the purpose of indicating which method signature to use, if the given
server method has multiple signatures (defaults to 0).

The timeout and protocol optional params are the same as in the xmlrpc_client::send()
method.

Helper functions

36

If set, the optional new_function_name parameter indicates which name should be used for the
generated function. In case it is not set the function name will be auto-generated.

If the return_source optional parameter is set, the function will return the php source code to
build the wrapper function, instead of evaluating it (useful to save the code and use it later as stand-
alone xmlrpc client).

If the encode_php_objs optional parameter is set, instances of php objects later passed as
parameters to the newly created function will receive a 'special' treatment that allows the server to
rebuild them as php objects instead of simple arrays. Note that this entails using a "slightly augmented"
version of the xmlrpc protocol (ie. using element attributes), which might not be understood by xmlrpc
servers implemented using other libraries.

If the decode_php_objs optional parameter is set, instances of php objects that have been
appropriately encoded by the server using a coordinate option will be deserialized as php objects
instead of simple arrays (the same class definition should be present server side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their constructor
method has to be invoked, and this means that the remote server can trigger execution of unforeseen
php code on the client: not really a code injection, but almost. Please enable this option only when
you trust the remote server.

In case of an error during generation of the wrapper function, FALSE is returned, otherwise the name
(or source code) of the new function.

Known limitations: server must support system.methodsignature for the wanted xmlrpc
method; for methods that expose multiple signatures, only one can be picked; for remote calls with
nested xmlrpc params, the caller of the generated php function has to encode on its own the params
passed to the php function if these are structs or arrays whose (sub)members include values of type
base64.

Note: calling the generated php function 'might' be slow: a new xmlrpc client is created on every
invocation and an xmlrpc-connection opened+closed. An extra 'debug' param is appended to the
parameter list of the generated php function, useful for debugging purposes.

Example usage:

$c = new xmlrpc_client('http://phpxmlrpc.sourceforge.net/server.php');

$function = wrap_xmlrpc_method($client, 'examples.getStateName');

if (!$function)
 die('Cannot introspect remote method');
else {
 $stateno = 15;
 $statename = $function($a);
 if (is_a($statename, 'xmlrpcresp')) // call failed
 {
 echo 'Call failed: '.$statename->faultCode().'. Calling again with debug on';
 $function($a, true);
 }
 else
 echo "OK, state nr. $stateno is $statename";
}

wrap_php_function
array wrap_php_function (string $funcname, string
$wrapper_function_name, array $extra_options)

Given a user-defined PHP function, create a PHP 'wrapper' function that can be exposed as xmlrpc
method from an xmlrpc_server object and called from remote clients, and return the appropriate
definition to be added to a server's dispatch map.

Helper functions

37

The optional $wrapper_function_name specifies the name that will be used for the auto-
generated function.

Since php is a typeless language, to infer types of input and output parameters, it relies on parsing the
javadoc-style comment block associated with the given function. Usage of xmlrpc native types (such
as datetime.dateTime.iso8601 and base64) in the docblock @param tag is also allowed, if you need
the php function to receive/send data in that particular format (note that base64 encoding/decoding is
transparently carried out by the lib, while datetime vals are passed around as strings).

Known limitations: only works for user-defined functions, not for PHP internal functions (reflection
does not support retrieving number/type of params for those); the wrapped php function will not be
able to programmatically return an xmlrpc error response.

If the return_source optional parameter is set, the function will return the php source code to
build the wrapper function, instead of evaluating it (useful to save the code and use it later in a stand-
alone xmlrpc server). It will be in the stored in the source member of the returned array.

If the suppress_warnings optional parameter is set, any runtime warning generated while
processing the user-defined php function will be catched and not be printed in the generated xml
response.

If the extra_options array contains the encode_php_objs value, wrapped functions returning
php objects will generate "special" xmlrpc responses: when the xmlrpc decoding of those responses
is carried out by this same lib, using the appropriate param in php_xmlrpc_decode(), the objects will
be rebuilt.

In short: php objects can be serialized, too (except for their resource members), using this function.
Other libs might choke on the very same xml that will be generated in this case (i.e. it has a nonstandard
attribute on struct element tags)

If the decode_php_objs optional parameter is set, instances of php objects that have been
appropriately encoded by the client using a coordinate option will be deserialized and passed to the
user function as php objects instead of simple arrays (the same class definition should be present server
side and client side).

Note that this might pose a security risk, since in order to rebuild the object instances their constructor
method has to be invoked, and this means that the remote client can trigger execution of unforeseen
php code on the server: not really a code injection, but almost. Please enable this option only when
you trust the remote clients.

Example usage:

/**
* State name from state number decoder. NB: do NOT remove this comment block.
* @param integer $stateno the state number
* @return string the name of the state (or error description)
*/
function findstate($stateno)
{
 global $stateNames;
 if (isset($stateNames[$stateno-1]))
 {
 return $stateNames[$stateno-1];
 }
 else
 {
 return "I don't have a state for the index '" . $stateno . "'";
 }
}

// wrap php function, build xmlrpc server
$methods = array();
$findstate_sig = wrap_php_function('findstate');
if ($findstate_sig)

Helper functions

38

 $methods['examples.getStateName'] = $findstate_sig;
$srv = new xmlrpc_server($methods);

Functions removed from the library
The following two functions have been deprecated in version 1.1 of the library, and removed in version
2, in order to avoid conflicts with the EPI xml-rpc library, which also defines two functions with the
same names.

To ease the transition to the new naming scheme and avoid breaking existing implementations, the
following scheme has been adopted:

• If EPI-XMLRPC is not active in the current PHP installation, the constant
XMLRPC_EPI_ENABLED will be set to '0'

• If EPI-XMLRPC is active in the current PHP installation, the constant XMLRPC_EPI_ENABLED
will be set to '1'

The following documentation is kept for historical reference:

xmlrpc_decode
mixed xmlrpc_decode (xmlrpcval $xmlrpc_val)

Alias for php_xmlrpc_decode.

xmlrpc_encode
xmlrpcval xmlrpc_encode (mixed $phpval)

Alias for php_xmlrpc_encode.

Debugging aids

xmlrpc_debugmsg
void xmlrpc_debugmsg (string $debugstring)

Sends the contents of $debugstring in XML comments in the server return payload. If a PHP
client has debugging turned on, the user will be able to see server debug information.

Use this function in your methods so you can pass back diagnostic information. It is only available
from xmlrpcs.inc.

39

Chapter 10. Reserved methods
In order to extend the functionality offered by XML-RPC servers without impacting on the protocol,
reserved methods are supported in this release.

All methods starting with system. are considered reserved by the server. PHP for XML-RPC itself
provides four special methods, detailed in this chapter.

Note that all server objects will automatically respond to clients querying these methods, unless the
property allow_system_funcs has been set to false before calling the service() method. This
might pose a security risk if the server is exposed to public access, e.g. on the internet.

system.getCapabilities

system.listMethods
This method may be used to enumerate the methods implemented by the XML-RPC server.

The system.listMethods method requires no parameters. It returns an array of strings, each of
which is the name of a method implemented by the server.

system.methodSignature
This method takes one parameter, the name of a method implemented by the XML-RPC server.

It returns an array of possible signatures for this method. A signature is an array of types. The first of
these types is the return type of the method, the rest are parameters.

Multiple signatures (i.e. overloading) are permitted: this is the reason that an array of signatures are
returned by this method.

Signatures themselves are restricted to the top level parameters expected by a method. For instance
if a method expects one array of structs as a parameter, and it returns a string, its signature is simply
"string, array". If it expects three integers, its signature is "string, int, int, int".

For parameters that can be of more than one type, the "undefined" string is supported.

If no signature is defined for the method, a not-array value is returned. Therefore this is the
way to test for a non-signature, if $resp below is the response object from a method call to
system.methodSignature:

$v = $resp->value();
if ($v->kindOf() != "array") {
 // then the method did not have a signature defined
}

See the introspect.php demo included in this distribution for an example of using this method.

system.methodHelp
This method takes one parameter, the name of a method implemented by the XML-RPC server.

It returns a documentation string describing the use of that method. If no such string is available, an
empty string is returned.

Reserved methods

40

The documentation string may contain HTML markup.

system.multicall
This method takes one parameter, an array of 'request' struct types. Each request struct must contain
a methodName member of type string and a params member of type array, and corresponds to the
invocation of the corresponding method.

It returns a response of type array, with each value of the array being either an error struct (containing
the faultCode and faultString members) or the successful response value of the corresponding single
method call.

41

Chapter 11. Examples
The best examples are to be found in the sample files included with the distribution. Some are included
here.

XML-RPC client: state name query
Code to get the corresponding state name from a number (1-50) from the demo server available on
SourceForge

 $m = new xmlrpcmsg('examples.getStateName',
 array(new xmlrpcval($HTTP_POST_VARS["stateno"], "int")));
 $c = new xmlrpc_client("/server.php", "phpxmlrpc.sourceforge.net", 80);
 $r = $c->send($m);
 if (!$r->faultCode()) {
 $v = $r->value();
 print "State number " . htmlentities($HTTP_POST_VARS["stateno"]) . " is " .
 htmlentities($v->scalarval()) . "
";
 print "<HR>I got this value back
<PRE>" .
 htmlentities($r->serialize()) . "</PRE><HR>\n";
 } else {
 print "Fault
";
 print "Code: " . htmlentities($r->faultCode()) . "
" .
 "Reason: '" . htmlentities($r->faultString()) . "'
";
 }

Executing a multicall call
To be documented...

42

Chapter 12. Frequently Asked
Questions
How to send custom XML as payload of a
method call

Unfortunately, at the time the XML-RPC spec was designed, support for namespaces in XML was not
as ubiquitous as it is now. As a consequence, no support was provided in the protocol for embedding
XML elements from other namespaces into an xmlrpc request.

To send an XML "chunk" as payload of a method call or response, two options are available: either
send the complete XML block as a string xmlrpc value, or as a base64 value. Since the '<' character in
string values is encoded as '<' in the xml payload of the method call, the XML string will not break
the surrounding xmlrpc, unless characters outside of the assumed character set are used. The second
method has the added benefits of working independently of the charset encoding used for the xml to
be transmitted, and preserving exactly whitespace, whilst incurring in some extra message length and
cpu load (for carrying out the base64 encoding/decoding).

Is there any limitation on the size of
the requests / responses that can be
successfully sent?

Yes. But I have no hard figure to give; it most likely will depend on the version of PHP in usage and
its configuration.

Keep in mind that this library is not optimized for speed nor for memory usage. Better alternatives
exist when there are strict requirements on throughput or resource usage, such as the php native xmlrpc
extension (see the PHP manual for more information).

Keep in mind also that HTTP is probably not the best choice in such a situation, and XML is a deadly
enemy. CSV formatted data over socket would be much more efficient.

If you really need to move a massive amount of data around, and you are crazy
enough to do it using phpxmlrpc, your best bet is to bypass usage of the xmlrpcval
objects, at least in the decoding phase, and have the server (or client) object return
to the calling function directly php values (see xmlrpc_client::return_type and
xmlrpc_server::functions_parameters_type for more details).

My server (client) returns an error whenever
the client (server) returns accented
characters

To be documented...

How to enable long-lasting method calls
To be documented...

Frequently Asked Questions

43

My client returns "XML-RPC Fault #2: Invalid
return payload: enable debugging to examine
incoming payload": what should I do?

The response you are seeing is a default error response that the client object returns to the php
application when the server did not respond to the call with a valid xmlrpc response.

The most likely cause is that you are not using the correct URL when creating the client object, or
you do not have appropriate access rights to the web page you are requesting, or some other common
http misconfiguration.

To find out what the server is really returning to your client, you have to enable the debug mode of
the client, using $client->setdebug(1);

How can I save to a file the xml of the xmlrpc
responses received from servers?

If what you need is to save the responses received from the server as xml, you have two options:

1- use the serialize() method on the response object.

$resp = $client->send($msg);
if (!$resp->faultCode())
 $data_to_be_saved = $resp->serialize();

Note that this will not be 100% accurate, since the xml generated by the response object can be different
from the xml received, especially if there is some character set conversion involved, or such (eg. if
you receive an empty string tag as <string/>, serialize() will output <string></string>), or if the server
sent back as response something invalid (in which case the xml generated client side using serialize()
will correspond to the error response generated internally by the lib).

2 - set the client object to return the raw xml received instead of the decoded objects:

$client = new xmlrpc_client($url);
$client->return_type = 'xml';
$resp = $client->send($msg);
if (!$resp->faultCode())
 $data_to_be_saved = $resp->value();

Note that using this method the xml response response will not be parsed at all by the library, only the
http communication protocol will be checked. This means that xmlrpc responses sent by the server
that would have generated an error response on the client (eg. malformed xml, responses that have
faultcode set, etc...) now will not be flagged as invalid, and you might end up saving not valid xml
but random junk...

Can I use the ms windows character set?
If the data your application is using comes from a Microsoft application, there are some chances that
the character set used to encode it is CP1252 (the same might apply to data received from an external
xmlrpc server/client, but it is quite rare to find xmlrpc toolkits that encode to CP1252 instead of UTF8).
It is a character set which is "almost" compatible with ISO 8859-1, but for a few extra characters.

PHP-XMLRPC only supports the ISO 8859-1 and UTF8 character sets. The net result of this situation
is that those extra characters will not be properly encoded, and will be received at the other end of

Frequently Asked Questions

44

the XML-RPC transmission as "garbled data". Unfortunately the library cannot provide real support
for CP1252 because of limitations in the PHP 4 xml parser. Luckily, we tried our best to support this
character set anyway, and, since version 2.2.1, there is some form of support, left commented in the
code.

To properly encode outgoing data that is natively in CP1252, you will have to uncomment
all relative code in the file xmlrpc.inc (you can search for the string "1252"), then set
$GLOBALS['xmlrpc_internalencoding']='CP1252'; Please note that all incoming data
will then be fed to your application as UTF-8 to avoid any potential data loss.

Does the library support using cookies / http
sessions?

In short: yes, but a little coding is needed to make it happen.

The code below uses sessions to e.g. let the client store a value on the server and retrieve it later.

$resp = $client->send(new xmlrpcmsg('registervalue', array(new xmlrpcval('foo'), new xmlrpcval('bar'))));
if (!$resp->faultCode())
{
 $cookies = $resp->cookies();
 if (array_key_exists('PHPSESSID', $cookies)) // nb: make sure to use the correct session cookie name
 {
 $session_id = $cookies['PHPSESSID']['value'];

 // do some other stuff here...

 $client->setcookie('PHPSESSID', $session_id);
 $val = $client->send(new xmlrpcmsg('getvalue', array(new xmlrpcval('foo')));
 }
}

Server-side sessions are handled normally like in any other php application. Please see the php manual
for more information about sessions.

NB: unlike web browsers, not all xmlrpc clients support usage of http cookies. If you have troubles
with sessions and control only the server side of the communication, please check with the makers
of the xmlrpc client in use.

45

Appendix A. Integration with the PHP
xmlrpc extension

To be documented more...

In short: for the fastest execution possible, you can enable the php native xmlrpc extension, and use it
in conjunction with phpxmlrpc. The following code snippet gives an example of such integration

/*** client side ***/
$c = new xmlrpc_client('http://phpxmlrpc.sourceforge.net/server.php');

// tell the client to return raw xml as response value
$c->return_type = 'xml';

// let the native xmlrpc extension take care of encoding request parameters
$r = $c->send(xmlrpc_encode_request('examples.getStateName', $_POST['stateno']));

if ($r->faultCode())
 // HTTP transport error
 echo 'Got error '.$r->faultCode();
else
{
 // HTTP request OK, but XML returned from server not parsed yet
 $v = xmlrpc_decode($r->value());
 // check if we got a valid xmlrpc response from server
 if ($v === NULL)
 echo 'Got invalid response';
 else
 // check if server sent a fault response
 if (xmlrpc_is_fault($v))
 echo 'Got xmlrpc fault '.$v['faultCode'];
 else
 echo'Got response: '.htmlentities($v);
}

46

Appendix B. Substitution of the PHP
xmlrpc extension

Yet another interesting situation is when you are using a ready-made php application, that provides
support for the XMLRPC protocol via the native php xmlrpc extension, but the extension is not
available on your php install (e.g. because of shared hosting constraints).

Since version 2.1, the PHP-XMLRPC library provides a compatibility layer that aims to be 100%
compliant with the xmlrpc extension API. This means that any code written to run on the extension
should obtain the exact same results, albeit using more resources and a longer processing time, using
the PHP-XMLRPC library and the extension compatibility module. The module is part of the EXTRAS
package, available as a separate download from the sourceforge.net website, since version 0.2

47

Appendix C. 'Enough of xmlrpcvals!':
new style library usage

To be documented...

In the meantime, see docs about xmlrpc_client::return_type and
xmlrpc_server::functions_parameters_types, as well as php_xmlrpc_encode, php_xmlrpc_decode and
php_xmlrpc_decode_xml

48

Appendix D. Usage of the debugger
A webservice debugger is included in the library to help during development and testing.

The interface should be self-explicative enough to need little documentation.

The most useful feature of the debugger is without doubt the "Show debug info" option. It allows to
have a screen dump of the complete http communication between client and server, including the http
headers as well as the request and response payloads, and is invaluable when troubleshooting problems
with charset encoding, authentication or http compression.

The debugger can take advantage of the JSONRPC library extension, to allow debugging of
JSON-RPC webservices, and of the JS-XMLRPC library visual editor to allow easy mouse-driven
construction of the payload for remote methods. Both components have to be downloaded separately
from the sourceforge.net web pages and copied to the debugger directory to enable the extra
functionality:

• to enable jsonrpc functionality, download the PHP-XMLRPC EXTRAS package, and copy the file
jsonrpc.inc either to the same directory as the debugger or somewhere in your php include path

• to enable the visual value editing dialog, download the JS-XMLRPC library, and copy somewhere
in the web root files visualeditor.php, visualeditor.css and the folders yui and img.
Then edit the debugger file controller.php and set appropriately the variable $editorpath.

	XML-RPC for PHP
	Table of Contents
	Chapter 1. Introduction
	Acknowledgements

	Chapter 2. What's new
	3.1.0
	3.0.1
	3.0.0
	3.0.0 beta
	2.2.2
	2.2.1
	2.2
	2.1
	2.0 final
	2.0 Release candidate 3
	2.0 Release candidate 2
	2.0 Release candidate 1

	Chapter 3. System Requirements
	Chapter 4. Files in the distribution
	Chapter 5. Known bugs and limitations
	Chapter 6. Support
	Online Support
	The Jellyfish Book

	Chapter 7. Class documentation
	xmlrpcval
	Notes on types
	int
	base64
	boolean
	string
	null

	Creation
	Methods
	addScalar
	addArray
	addStruct
	kindOf
	serialize
	scalarVal
	scalarTyp
	arrayMem
	arraySize
	structMem
	structEach
	structReset
	structMemExists

	xmlrpcmsg
	Creation
	Methods
	addParam
	getNumParams
	getParam
	method
	parseResponse
	parseResponseFile
	serialize

	xmlrpc_client
	Creation
	Methods
	send
	multiCall
	setAcceptedCompression
	setCaCertificate
	setCertificate
	setCookie
	setCredentials
	setCurlOptions
	setDebug
	setKey
	setProxy
	setRequestCompression
	setSSLVerifyHost
	setSSLVerifyPeer
	setSSLVersion
	setUserAgent

	Variables
	no_multicall
	request_charset_encoding
	return_type

	xmlrpcresp
	Creation
	Methods
	faultCode
	faultString
	value
	serialize

	xmlrpc_server
	Method handler functions
	The dispatch map
	Method signatures
	Delaying the server response
	Modifying the server behaviour
	setDebug()
	allow_system_funcs
	compress_response
	exception_handling
	response_charset_encoding

	Fault reporting
	'New style' servers

	Chapter 8. Global variables
	"Constant" variables
	$xmlrpcerruser
	$xmlrpcI4, $xmlrpcInt, $xmlrpcBoolean, $xmlrpcDouble, $xmlrpcString, $xmlrpcDateTime, $xmlrpcBase64, $xmlrpcArray, $xmlrpcStruct, $xmlrpcValue, $xmlrpcNull
	$xmlrpcTypes, $xmlrpc_valid_parents, $xmlrpcerr, $xmlrpcstr, $xmlrpcerrxml, $xmlrpc_backslash, $_xh, $xml_iso88591_Entities, $xmlEntities, $xmlrpcs_capabilities

	Variables whose value can be modified
	xmlrpc_defencoding
	xmlrpc_internalencoding
	xmlrpcName
	xmlrpcVersion
	xmlrpc_null_extension
	xmlrpc_null_apache_encoding

	Chapter 9. Helper functions
	Date functions
	iso8601_encode
	iso8601_decode

	Easy use with nested PHP values
	php_xmlrpc_decode
	php_xmlrpc_encode
	php_xmlrpc_decode_xml

	Automatic conversion of php functions into xmlrpc methods (and vice versa)
	wrap_xmlrpc_method
	wrap_php_function

	Functions removed from the library
	xmlrpc_decode
	xmlrpc_encode

	Debugging aids
	xmlrpc_debugmsg

	Chapter 10. Reserved methods
	system.getCapabilities
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.multicall

	Chapter 11. Examples
	XML-RPC client: state name query
	Executing a multicall call

	Chapter 12. Frequently Asked Questions
	How to send custom XML as payload of a method call
	Is there any limitation on the size of the requests / responses that can be successfully sent?
	My server (client) returns an error whenever the client (server) returns accented characters
	How to enable long-lasting method calls
	My client returns "XML-RPC Fault #2: Invalid return payload: enable debugging to examine incoming payload": what should I do?
	How can I save to a file the xml of the xmlrpc responses received from servers?
	Can I use the ms windows character set?
	Does the library support using cookies / http sessions?

	Appendix A. Integration with the PHP xmlrpc extension
	Appendix B. Substitution of the PHP xmlrpc extension
	Appendix C. 'Enough of xmlrpcvals!': new style library usage
	Appendix D. Usage of the debugger

